【題目】如圖,平面直角坐標(biāo)系中,△ABC三個(gè)頂點(diǎn)的坐標(biāo)分別為A(1,0),B(2,-3)C(4,-2).

(1)在圖中作出△ABC關(guān)于x軸對(duì)稱(chēng)的圖形△A1B1C1.

(2)作出△A1B1C1向左平移4個(gè)單位長(zhǎng)度后得到的△A2B2C2,并直接寫(xiě)出點(diǎn)C2的坐標(biāo)_____.

(3)A2B2C2的面積是____.

【答案】(1)見(jiàn)解析;(2)畫(huà)圖見(jiàn)解析,C2(0,2);(3)3.5.

【解析】

1)分別作出點(diǎn)B和點(diǎn)C關(guān)于x軸的對(duì)稱(chēng)點(diǎn),再順次連接即可得;

2)將三角形三頂點(diǎn)分別向左平移4個(gè)單位得到其對(duì)應(yīng)點(diǎn),再順次連接可得;

3)利用矩形的面積減去周?chē)嘤嗳切蔚拿娣e即可.

解:(1)如圖所示,△A1B1C1即為所求:

2)如圖所示,△A2B2C2即為所求, C2(0,2)

3)如圖,△A2B2C2的面積==3.5.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,A(﹣1,5),B(﹣1,0),C(﹣43).

1)在圖中的點(diǎn)上標(biāo)出相應(yīng)字母A、BC,并求出ABC的面積;

2)在圖中作出ABC關(guān)于y軸的對(duì)稱(chēng)圖形A1B1C1;

3)寫(xiě)出點(diǎn)A1B1,C1的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng)試銷(xiāo)一種成本為每件60元的服裝,規(guī)定試銷(xiāo)期間銷(xiāo)售單價(jià)不低于成本單價(jià),且獲利不得高于45%,經(jīng)試銷(xiāo)發(fā)現(xiàn),銷(xiāo)售量y(件)與銷(xiāo)售單價(jià)x(元)符合一次函數(shù)y=kx+b,且x=65時(shí),y=55;x=75時(shí),y=45

1)求一次函數(shù)y=kx+b的表達(dá)式;

2)若該商場(chǎng)獲得利潤(rùn)為W元,試寫(xiě)出利潤(rùn)W與銷(xiāo)售單價(jià)x之間的關(guān)系式;銷(xiāo)售單價(jià)定為多少元時(shí),商場(chǎng)可獲得最大利潤(rùn),最大利潤(rùn)是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,小明從點(diǎn)A出發(fā),前進(jìn)10m后向右轉(zhuǎn)20°,再前進(jìn)10m后又向右轉(zhuǎn)20°,這樣一直下去,直到他第一次回到出發(fā)點(diǎn)A為止,他所走的路徑構(gòu)成了一個(gè)多邊形.

(1)小明一共走了多少米?

(2)這個(gè)多邊形的內(nèi)角和是多少度?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正六邊形OABCDE中,點(diǎn)E(﹣2,0),將該正六邊形向右平移a(a>0)個(gè)單位后,恰有兩個(gè)頂點(diǎn)落在反比例函數(shù)y=(k>0)的圖象上,則k的值為__

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)O是等邊△ABC內(nèi)一點(diǎn),∠BOC,∠AOC100°,將△BOC繞點(diǎn)B按逆時(shí)針?lè)较蛐D(zhuǎn)60°得到△BDA,連接OD.

(1) 求證:△BOD是等邊三角形.

(2) 當(dāng)150°時(shí),試判斷△AOD的形狀,并說(shuō)明理由.

(3) 若△AOD是等腰三角形,請(qǐng)你直接寫(xiě)出的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,AB=AC,點(diǎn)DBC的中點(diǎn),點(diǎn)E△ABC內(nèi)一點(diǎn),若∠AEB=∠CED=90°,AE=BE,CE=DE=2,則圖中陰影部分的面積等于__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知拋物線的對(duì)稱(chēng)軸為直線,且拋物線與軸交于、兩點(diǎn),與軸交于點(diǎn),其中,.

(1)若直線經(jīng)過(guò)、兩點(diǎn),求直線和拋物線的解析式;

(2)在拋物線的對(duì)稱(chēng)軸上找一點(diǎn),使點(diǎn)到點(diǎn)的距離與到點(diǎn)的距離之和最小,求出點(diǎn)的坐標(biāo);

(3)設(shè)點(diǎn)為拋物線的對(duì)稱(chēng)軸上的一個(gè)動(dòng)點(diǎn),求使為直角三角形的點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在如圖所示的正方形網(wǎng)格中,每個(gè)小正方形的邊長(zhǎng)為1各單位,格點(diǎn)三角形(頂點(diǎn)是網(wǎng)格線的交點(diǎn)的三角形)△ABC的頂點(diǎn)A,B的坐標(biāo)分別為(1,4),(﹣3,1).

(1)請(qǐng)?jiān)诰W(wǎng)格所在的平面內(nèi)作出符合上述表述的平面直角坐標(biāo)系;

(2)請(qǐng)你將A、B、C的橫坐標(biāo)不變,縱坐標(biāo)乘以﹣1所得到的點(diǎn)A1、B1、C1描在坐標(biāo)系中,并畫(huà)出△A1B1C1,其中點(diǎn)C1的坐標(biāo)為   

(3)△ABC的面積是   

查看答案和解析>>

同步練習(xí)冊(cè)答案