【題目】如圖,已知△ABC中,點D在邊BC上,∠DAB=∠B,點E在邊AC上,滿足AE·CD=AD·CE.
(1)求證:DE∥AB;
(2)如果點F是DE延長線上一點,且BD是DF和AB的比例中項,連接AF.求證:DF=AF.
【答案】(1)見解析;(2)見解析.
【解析】
(1)根據(jù)已知條件得到 ,根據(jù)等腰三角形的判定定理得到AD=BD ,等量代換即可得到結(jié)論;
(2)由BD是DF和AB的比例中項,得到BD2=DF·AB ,等量代換得到AD2=DF·AB ,推出 ,根據(jù)相似三角形的性質(zhì)得到 ,于是得到結(jié)論.
證明 (1)∵AE·CD=AD·CE,
∴=,
∵∠DAB=∠B,
∴AD=BD,
∴=,
∴DE∥AB;
(2)∵BD是DF和AB的比例中項,
∴BD2=DF·AB,
∵AD=BD,
∴AD2=DF·AB,
∴==1,
∵DE∥AB,
∴∠ADF=∠BAD,
∴△ADF∽△DBA,
∴=,
∴DF=AF.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,直線y=-x+2分別交x軸、y軸于點A、B,拋物線y=﹣x2+bx+c經(jīng)過點A、B.點P是x軸上一個動點,過點P作垂直于x軸的直線分別交拋物線和直線AB于點E和點F.設(shè)點P的橫坐標為m.
(1)點A的坐標為 .
(2)求這條拋物線所對應(yīng)的函數(shù)表達式.
(3)點P在線段OA上時,若以B、E、F為頂點的三角形與△FPA相似,求m的值.
(4)若E、F、P三個點中恰有一點是其它兩點所連線段的中點(三點重合除外),稱E、F、P三點為“共諧點”.直接寫出E、F、P三點成為“共諧點”時m的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,△ABC的頂點坐標分別為A(-2,2),B(-4,0),C(-4;-4),
(1)在y軸右側(cè),以O為位似中心,畫出△A'B'C′,使它與△ABC的相似比為1:2;
(2)根據(jù)(1)的作圖,sin∠A'C'B′=__________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】△ABC中,∠A=30°,AC=8,∠B=90°,點D在AB上,BD=,點P在△ABC的邊上,則當AP=2PD時,PD的長為____________________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在⊙O中,AB是⊙O的直徑,AE是弦,OG⊥AE于點G,交⊙O 于點D,連結(jié)BD交AE于點F,延長AE至點C,連結(jié)BC.
(1)當BC=FC時,證明:BC是⊙O的切線;
(2)已知⊙O的半徑,當tanA=,求GF的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,BC為弦,D為弧AC的中點,AC、BD相交于點E.AP交BD的延長線于點P.∠PAC=2∠CBD.
(1)求證:AP是⊙O的切線;
(2)若PD=3,AE=5,求△APE的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC是一塊銳角三角形余料,邊BC=120cm,高AD=80cm,要把它加工成一個矩形零件,使矩形PQMN的一邊在BC上,其余兩個頂點分別在AB、AC上.設(shè)PQ=xcm,矩形PQMN的面積為ycm2,請寫出y關(guān)于x的函數(shù)表達式(并注明x的取值范圍)_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一個盒中有4個完全相同的小球,把它們分別標號為1,2,3,4,隨機摸取一個小球然后放回,再隨機摸出一個小球.
(Ⅰ)請用列表法(或畫樹狀圖法)列出所有可能的結(jié)果;
(Ⅱ)求兩次取出的小球標號相同的概率;
(Ⅲ)求兩次取出的小球標號的和大于6的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c的圖象如圖,則一次函數(shù)y=bx+b2﹣4ac與反比例函數(shù)y=在同一坐標系內(nèi)的圖象大致為( )
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com