【題目】如圖,已知ABC中,點D在邊BC上,∠DABB,點E在邊AC上,滿足AE·CDAD·CE.

(1)求證:DEAB;

(2)如果點FDE延長線上一點,且BDDFAB的比例中項,連接AF.求證:DFAF.

【答案】(1)見解析;(2)見解析.

【解析】

(1)根據(jù)已知條件得到 ,根據(jù)等腰三角形的判定定理得到ADBD ,等量代換即可得到結(jié)論;
(2)BDDFAB的比例中項,得到BD2DF·AB ,等量代換得到AD2DF·AB ,推出 ,根據(jù)相似三角形的性質(zhì)得到 ,于是得到結(jié)論.

證明 (1)AE·CDAD·CE,

,

∵∠DABB

ADBD,

,

DEAB;

(2)BDDFAB的比例中項,

BD2DF·AB

ADBD,

AD2DF·AB

=1,

DEAB,

∴∠ADFBAD,

∴△ADF∽△DBA,

,

DFAF.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,直線y-x+2分別交x軸、y軸于點A、B,拋物線y=﹣x2+bx+c經(jīng)過點AB.點Px軸上一個動點,過點P作垂直于x軸的直線分別交拋物線和直線AB于點E和點F.設(shè)點P的橫坐標為m

1)點A的坐標為   

2)求這條拋物線所對應(yīng)的函數(shù)表達式.

3)點P在線段OA上時,若以B、E、F為頂點的三角形與△FPA相似,求m的值.

4)若E、FP三個點中恰有一點是其它兩點所連線段的中點(三點重合除外),稱E、FP三點為“共諧點”.直接寫出E、F、P三點成為“共諧點”時m的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,ABC的頂點坐標分別為A(-2,2),B(-4,0),C(-4;-4),

(1)y軸右側(cè),以O為位似中心,畫出A'B'C′,使它與ABC的相似比為1:2;

(2)根據(jù)(1)的作圖,sinA'C'B′=__________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】ABC中,∠A=30°,AC=8,B=90°,點DAB上,BD=,點P在△ABC的邊上,則當AP=2PD時,PD的長為____________________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在⊙O中,AB是⊙O的直徑,AE是弦,OGAE于點G,交⊙O 于點D,連結(jié)BDAE于點F,延長AE至點C,連結(jié)BC

(1)BC=FC時,證明:BC是⊙O的切線;

(2)已知⊙O的半徑,當tanA=,求GF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABO的直徑,BC為弦,D為弧AC的中點,AC、BD相交于點EAPBD的延長線于點P.∠PAC=2∠CBD

(1)求證:APO的切線;

(2)若PD=3,AE=5,求△APE的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC是一塊銳角三角形余料,邊BC=120cm,高AD=80cm,要把它加工成一個矩形零件,使矩形PQMN的一邊在BC上,其余兩個頂點分別在AB、AC上.設(shè)PQxcm,矩形PQMN的面積為ycm2,請寫出y關(guān)于x的函數(shù)表達式(并注明x的取值范圍)_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一個盒中有4個完全相同的小球,把它們分別標號為1,2,3,4,隨機摸取一個小球然后放回,再隨機摸出一個小球.

(Ⅰ)請用列表法(或畫樹狀圖法)列出所有可能的結(jié)果;

(Ⅱ)求兩次取出的小球標號相同的概率;

(Ⅲ)求兩次取出的小球標號的和大于6的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c的圖象如圖,則一次函數(shù)y=bx+b2﹣4ac與反比例函數(shù)y=在同一坐標系內(nèi)的圖象大致為( )

A. B. C. D.

查看答案和解析>>

同步練習冊答案