【題目】如圖1,△ABC中,AB=AC,∠BAC=90°,CD平分∠ACB,BE⊥CD,垂足E在CD的延長線上.請解答下列問題:
(1)圖中與∠DBE相等的角有: ;
(2)直接寫出BE和CD的數(shù)量關系;
(3)若△ABC的形狀、大小不變,直角三角形BEC變?yōu)閳D2中直角三角形BED,∠E=90°,且∠EDB=∠C,DE與AB相交于點F.試探究線段BE與FD的數(shù)量關系,并證明你的結論.
【答案】(1)∠ACE和∠BCD;
(2)BE=CD;
(3)BE=DF,證明見解析
【解析】
(1)根據(jù)三角形內角和定理得到∠DBE=∠ACE,根據(jù)角平分線的定義得到∠BCD=∠ACE,得到答案;
(2)延長BE交CA延長線于F,證明△CEF≌△CEB,得到FE=BE,證明△ACD≌△ABF,得到CD=BF,證明結論;
(3)過點D作DG∥CA,交BE的延長線于點G,與AE相交于H,分別證明△BGH≌△DFH、△BDE≌△GDE,根據(jù)全等三角形的性質解答即可.
解:(1)∵BE⊥CD,
∴∠E=90°,
∴∠E=∠BAC,又∠EDB=∠ADC,
∴∠DBE=∠ACE,
∵CD平分∠ACB,
∴∠BCD=∠ACE,
∴∠DBE=∠BCD,
故答案為:∠ACE和∠BCD;
(2)延長BE交CA延長線于F,
∵CD平分∠ACB,
∴∠FCE=∠BCE,
在△CEF和△CEB中,
,
∴△CEF≌△CEB(ASA),
∴FE=BE,
在△ACD和△ABF中,
,
∴△ACD≌△ABF(ASA),
∴CD=BF,
∴BE=CD;
(3)BE=DF
證明:過點D作DG∥CA,交BE的延長線于點G,與AE相交于H,
∵DG∥AC,
∴∠GDB=∠C,∠BHD=∠A=90°,
∵∠EDB=∠C,
∴∠EDB=∠EDG=∠C,
∵BE⊥ED,
∴∠BED=90°,
∴∠BED=∠BHD,
∵∠EFB=∠HFD,
∴∠EBF=∠HDF,
∵AB=AC,∠BAC=90°,
∴∠C=∠ABC=45°,
∵GD∥AC,
∴∠GDB=∠C=45°,
∴∠GDB=∠ABC=45°,
∴BH=DH,
在△BGH和△DFH中,
,
∴△BGH≌△DFH(ASA)
∴BG=DF,
∵在△BDE和△GDE中,
,
∴△BDE≌△GDE(ASA)
∴BE=EG,
∴BE=.
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在直角梯形ABCD中,AB⊥BC,AD∥BC,點P為DC上一點,且AP=AB,過點C作CE⊥BP交直線BP于E.
(1) 若,求證:;
(2) 若AB=BC.
① 如圖2,當點P與E重合時,求的值;
② 如圖3,設∠DAP的平分線AF交直線BP于F,當CE=1,時,直接寫出線段AF的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一個正方形AOBC各頂點的坐標分別為A(0,3),O(0,0),B(3,0),C(3,3).若以原點為位似中心,將這個正方形的邊長縮小為原來的,則新正方形的中心的坐標為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知正方形ABCD的對角線AC、BD交于點O,CE⊥AC與AD邊的延長線交于點E.
(1)求證:四邊形BCED是平行四邊形;
(2)延長DB至點F,聯(lián)結CF,若CF=BD,求∠BCF的大。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點P是∠AOB內任意一點,OP=5,M,N分別是射線OA和OB上的動點,若△PMN周長的最小值為5,則∠AOB的度數(shù)為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠BAC=120°,將△ABC繞點A順時針旋轉一定角度(小于360°)得到△B′AC′.
(1)若點B′落在線段AC上,在圖中畫出△B′AC′,并直接寫出當AC=4時,CC′的值;
(2)若∠ACB=20°,旋轉后,B′C′⊥AC,請直接寫出旋轉角的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某工藝品專賣店計劃購進甲、乙兩種不同類型的木雕工藝品,已知件甲種工藝品的進價與件乙種工藝品的進價的和為元,件甲種工藝品的進價與件乙種工藝品的進價的和為元.
(1)求每件甲種、乙種工藝品的進價分別是多少元;
(2)如果購進甲種工藝品有優(yōu)惠,優(yōu)惠方法是:購進甲種工藝品超過件,超出部分可以享受折優(yōu)惠.若購進(為正整數(shù))件甲種工藝品需要花費元,請你寫出與的函數(shù)表達式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在四邊形ABCD中,∠ABC=∠DCB=90°,AB=BC.過點B作BF⊥AD,垂足為點F,
(1)求證:∠DAB=∠FBC;
(2)點E為線段CD上的一點,連接AE交BF于G,若∠BAE+2∠EAD=90°,AG=1,AB=5,求線段CD的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了促進學生多樣化發(fā)展,某校組織開展了社團活動,分別設置了體育類、藝術類、文學類及其它類社團(要求人人參與社團,每人只能選擇一項).為了解學生喜愛哪種社團活動,學校做了一次抽樣調查.根據(jù)收集到的數(shù)據(jù),繪制成如下兩幅不完整的統(tǒng)計圖,請根據(jù)圖中提供的信息,完成下列問題:
(1)此次共調查了多少人?
(2)求文學社團在扇形統(tǒng)計圖中所占圓心角的度數(shù);
(3)請將條形統(tǒng)計圖補充完整;
(4)若該校有1500名學生,請估計喜歡體育類社團的學生有多少人?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com