【題目】如圖,等邊三角形 ABC 的邊長為 3,過點(diǎn) B 的直線 l⊥AB,且△ABC 與△A′BC′關(guān)于直線 l 對(duì)稱,D 為線段 BC′上一動(dòng)點(diǎn),則 AD+CD 的最小值是_____.
【答案】6
【解析】
作點(diǎn)A關(guān)于直線BC′的對(duì)稱點(diǎn)A1,連接A1C交直線BC與點(diǎn)D,由圖象可知點(diǎn)D在C′B的延長線上,由此可得出當(dāng)點(diǎn)D與點(diǎn)B重合時(shí),AD+CD的值最小,由此即可得出結(jié)論,再根據(jù)等邊三角形的性質(zhì)算出AB+CB的長度即可.
作點(diǎn)A關(guān)于直線BC′的對(duì)稱點(diǎn)A1,連接A1C交直線BC與點(diǎn)D,如圖所示.
由圖象可知當(dāng)點(diǎn)D在C′B的延長線上時(shí),AD+CD最小,
而點(diǎn)D為線段BC′上一動(dòng)點(diǎn),
∴當(dāng)點(diǎn)D與點(diǎn)B重合時(shí)AD+CD值最小,
此時(shí)AD+CD=AB+CB=3+3=6.
故答案為:6.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】平面直角坐標(biāo)系中,A(m,0)、B(m+1,0)、E(2,0),其中-1≤m≤2,分別以AB、OE為邊向上作正方形ABCD、OEFG.
(1)請(qǐng)直接寫出線段AB的長;
(2)正方形ABCD沿x軸正半軸運(yùn)動(dòng)過程中與正方形OEFG重疊部分面積為S,求S與m的關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于a,b的多項(xiàng)式2(a2-2ab-b2)-(a2+mab+2b2).
(1)若合并后不含有ab項(xiàng),求m的值;
(2)在(1)的條件下,當(dāng)a=-3,b=時(shí),求代數(shù)式的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】看圖填空:已知如圖,AD⊥BC于D,EG⊥BC于G,∠E=∠1,
求證:AD平分∠BAC.
證明:∵AD⊥BC于D,EG⊥BC于G( 已知 )
∴∠ADC=90°,∠EGC=90°(___________)
∴∠ADC=∠EGC(等量代換)
∴AD∥EG(_____________)
∴∠1=∠2(___________)
∠E=∠3(___________)
又∵∠E=∠1( 已知)
∴∠2=∠3(___________)
∴AD平分∠BAC(___________).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知OM⊥ON,斜邊長為4的等腰直角△ABC的斜邊AC在射線上,頂點(diǎn)C與O重合,若點(diǎn)A沿NO方向向O運(yùn)動(dòng),△ABC的頂點(diǎn)C隨之沿OM方向運(yùn)動(dòng),點(diǎn)A移動(dòng)到點(diǎn)O為止,則直角頂點(diǎn)B運(yùn)動(dòng)的路徑長是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】列方程解應(yīng)用題:
港珠澳大橋東起香港國際機(jī)場附近的香港口岸人工島,向西橫跨伶仃洋海域后連接珠海和澳門,止于珠海洪灣,總長 55 千米,是粵港澳三地首次合作共建的超大型跨海交通工程,也是中國第一例集橋、雙人工島、隧道為一體的通道.據(jù)統(tǒng)計(jì),港珠澳大橋開通后的首個(gè)周日經(jīng)大橋往來三地的車流量超過 3000輛次,客流量則接近 7.8 萬人次.某天,甲乙兩輛巴士均從香港口岸人工島出發(fā)沿港珠澳大橋開往珠海洪灣,甲巴士平均每小時(shí)比乙巴士多行駛 10 千米,其行駛時(shí)間是乙巴士行駛時(shí)間的求乘坐甲巴士從香港口岸人工島出發(fā)到珠海洪灣需要多長時(shí)間.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將△ABC沿射線AB的方向平移2個(gè)單位到△DEF的位置,點(diǎn)A、B、C的對(duì)應(yīng)點(diǎn)分別點(diǎn)D、E、F.
(1)直接寫出圖中與AD相等的線段.
(2)若AB=3,則AE=______.
(3)若∠ABC=75°,求∠CFE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將1,2,3,……,100這100個(gè)自然數(shù),任意分為50組,每組兩個(gè)數(shù),現(xiàn)將每組的兩個(gè)數(shù)中任一數(shù)值記作a,另一個(gè)記作b,代入代數(shù)式中進(jìn)行計(jì)算,求出其結(jié)果,50組數(shù)代入后可求得50個(gè)值,則這50個(gè)值的和的最大值是___________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀材料:
一般地,當(dāng)α、β為任意角時(shí),tan(α+β)與tan(α﹣β)的值可以用下面的公式求得:tan(α±β)= .
例如:tan15°=tan(45°﹣30°)= = =
= = =2﹣ .
根據(jù)以上材料,解決下列問題:
(1)求tan75°的值;
(2)都勻文峰塔,原名文筆塔,始建于明代萬歷年間,系五層木塔.文峰塔的木塔年久傾毀,僅存塔基.1983年,人民政府撥款維修文峰塔,成為今天的七層六面實(shí)心石塔(圖1),小華想用所學(xué)知識(shí)來測量該鐵塔的高度,如圖2,已知小華站在離塔底中心A處5.7米的C處,測得塔頂?shù)难鼋菫?5°,小華的眼睛離地面的距離DC為1.72米,請(qǐng)幫助小華求出文峰塔AB的高度.(精確到1米,參考數(shù)據(jù) ≈1.732, ≈1.414)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com