【題目】二次函數(shù)y=ax2+bx+c,自變量x與函數(shù)y的對(duì)應(yīng)值如表:

x

﹣5

﹣4

﹣3

﹣2

﹣1

0

y

4

0

﹣2

﹣2

0

4

下列說(shuō)法正確的是(
A.拋物線的開(kāi)口向下
B.當(dāng)x>﹣3時(shí),y隨x的增大而增大
C.二次函數(shù)的最小值是﹣2
D.拋物線的對(duì)稱(chēng)軸是x=﹣

【答案】D
【解析】解:將點(diǎn)(﹣4,0)、(﹣1,0)、(0,4)代入到二次函數(shù)y=ax2+bx+c中,得: ,解得: ,
∴二次函數(shù)的解析式為y=x2+5x+4.
A、a=1>0,拋物線開(kāi)口向上,A不正確;
B、﹣ =﹣ ,當(dāng)x≥﹣ 時(shí),y隨x的增大而增大,B不正確;
C、y=x2+5x+4= ,二次函數(shù)的最小值是﹣ ,C不正確;
D、﹣ =﹣ ,拋物線的對(duì)稱(chēng)軸是x=﹣ ,D正確.
故選D.
【考點(diǎn)精析】掌握二次函數(shù)的性質(zhì)是解答本題的根本,需要知道增減性:當(dāng)a>0時(shí),對(duì)稱(chēng)軸左邊,y隨x增大而減;對(duì)稱(chēng)軸右邊,y隨x增大而增大;當(dāng)a<0時(shí),對(duì)稱(chēng)軸左邊,y隨x增大而增大;對(duì)稱(chēng)軸右邊,y隨x增大而減。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小蘇和小林在如圖1所示的跑道上進(jìn)行4×50米折返跑.在整個(gè)過(guò)程中,跑步者距起跑線的距離y(單位:m)與跑步時(shí)間t(單位:s)的對(duì)應(yīng)關(guān)系如圖2所示.下列敘述正確的是(
A.兩人從起跑線同時(shí)出發(fā),同時(shí)到達(dá)終點(diǎn)
B.小蘇跑全程的平均速度大于小林跑全程的平均速度
C.小蘇前15s跑過(guò)的路程大于小林前15s跑過(guò)的路程
D.小林在跑最后100m的過(guò)程中,與小蘇相遇2次

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是⊙O的一條弦,點(diǎn)C是⊙O上一動(dòng)點(diǎn),且∠ACB=30°,點(diǎn)E、F分別是AC、BC的中點(diǎn),直線EF與⊙O交于G、H兩點(diǎn),若⊙O的半徑為7,則GE+FH的最大值為(

A.10.5
B.7 ﹣3.5
C.11.5
D.7 ﹣3.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知菱形ABCD的邊長(zhǎng)為6,對(duì)角線AC與BD相交于點(diǎn)O,OE⊥AB,垂足為點(diǎn)E,AC=4,那么sin∠AOE=

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)E是四邊形ABCD的對(duì)角線BD上的一點(diǎn),∠BAE=∠CBD=∠DAC.

(1)求證:DEAB=BCAE;
(2)求證:∠AED+∠ADC=180°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線y=x2﹣4x﹣5與x軸相交于A、B兩點(diǎn),與y軸相交于點(diǎn)C,點(diǎn)D是直線BC下方拋物線上一點(diǎn),過(guò)點(diǎn)D作y軸的平行線,與直線BC相交于點(diǎn)E.

(1)求直線BC的解析式;
(2)當(dāng)線段DE的長(zhǎng)度最大時(shí),求點(diǎn)D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB為⊙O的直徑,直線l與⊙O相切于點(diǎn)C,AD⊥l,垂足為D,AD交⊙O于點(diǎn)E,連接OC、BE.若AE=6,OA=5,則線段DC的長(zhǎng)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,如圖拋物線y=ax2+3ax+c(a>0)與y軸交于點(diǎn)C,與x軸交于A,B兩點(diǎn),點(diǎn)A在點(diǎn)B左側(cè).點(diǎn)B的坐標(biāo)為(1,0),OC=3OB.

(1)求拋物線的解析式;
(2)若點(diǎn)D是線段AC下方拋物線上的動(dòng)點(diǎn),求四邊形ABCD面積的最大值;
(3)若點(diǎn)E在x軸上,點(diǎn)P在拋物線上.是否存在以A,C,E,P為頂點(diǎn)且以AC為一邊的平行四邊形?若存在,寫(xiě)出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將矩形ABCD沿直線EF折疊,使點(diǎn)C與點(diǎn)A重合,折痕交AD于點(diǎn)E,交BC于點(diǎn)F,連接AF、CE,
(1)求證:四邊形AFCE為菱形;
(2)設(shè)AE=a,ED=b,DC=c.請(qǐng)寫(xiě)出一個(gè)a、b、c三者之間的數(shù)量關(guān)系式.

查看答案和解析>>

同步練習(xí)冊(cè)答案