【題目】一個不透明的袋中裝有20個球,其中7個黃球,8個黑球,5個紅球,這些球只有顏色不同,其它都相同.
(1)求從袋中摸出一個球是黃球的概率;
(2)現(xiàn)從袋中取出若干個黑球,攪勻后,使從袋中摸出一個球是黑球的概率是 ,求從袋中取出黑球的個數(shù).

【答案】
(1)解:∵一個不透明的袋中裝有20個只有顏色不同的球,其中7個黃球,8個黑球,5個紅球,

∴從袋中摸出一個球是黃球的概率為


(2)解:設從袋中取出x個黑球,

根據(jù)題意,得:8﹣x= (20﹣x),

解得:x=2,

答:從袋中取出黑球的個數(shù)為2個


【解析】(1)根據(jù)一個不透明的袋中裝有20個球,其中7個黃球,8個黑球,5個紅球,求出從袋中摸出一個球是黃球的概率是(7÷20);(2)根據(jù)從袋中取出x個黑球,袋中還剩黑球(8-x)個,共有球(20﹣x)個,由從袋中摸出一個球是黑球的概率,得到等式,求出x的值.
【考點精析】通過靈活運用用頻率估計概率,掌握在同樣條件下,做大量的重復試驗,利用一個隨機事件發(fā)生的頻率逐漸穩(wěn)定到某個常數(shù),可以估計這個事件發(fā)生的概率即可以解答此題.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】等腰三角形中有一個內(nèi)角為40°,則其底角的度數(shù)是_____________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一次模擬考試后,數(shù)學陳老師把一班的數(shù)學成績制成如圖的統(tǒng)計圖,并給了幾個信息:①前兩組的百分比之和是14%;②第一組的百分比是2%;③自左到右第二、三、四組的頻數(shù)比為398,然后布置學生(也請你一起)結(jié)合統(tǒng)計圖完成下列問題:

(1)全班學生是多少人?

(2)成績不少于90分為優(yōu)秀,那么全班成績的優(yōu)秀率是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩輛汽車分別從A、B兩地同時出發(fā),沿同一條公路相向而行,乙車車發(fā)2h后休息,與甲車相遇后,繼續(xù)行駛,設甲、乙兩車與B地的路程分別為y(km),y(km),甲車行駛的時間為x(h),y , y與x之間的函數(shù)圖象如圖所示,結(jié)合圖象解答下列問題:

(1)求:y與x的函數(shù)關系式,并寫出自變量x的取值范圍;
(2)乙車休息了h;
(3)當兩車相距80km時,直接寫出x的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】將一塊矩形鐵皮的四個角各剪去一個邊長為1米的正方形后,剩下的部分剛好圍成一個容積為15m3的無蓋長方體水箱,且此長方體水箱的底面長比寬多2米.求該矩形鐵皮的長和寬各是多少米?若設該矩形鐵皮的寬是x米,則根據(jù)題意可得方程為( )
A.(x+2)(x﹣2)×1=15
B.x(x﹣2)×1=15
C.x(x+2)×1=15
D.(x+4)(x﹣2)×1=15

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y=(x>0)的圖象交于點P(n,2),與x軸交于點A(﹣4,0),與y軸交于點C,PB⊥x軸于點B,點A與點B關于y軸對稱.

(1)求一次函數(shù),反比例函數(shù)的解析式;

(2)求證:點C為線段AP的中點;

(3)反比例函數(shù)圖象上是否存在點D,使四邊形BCPD為菱形?如果存在,說明理由并求出點D的坐標;如果不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在一次射擊訓練中,甲、乙兩人各射擊10次,兩人10次射擊成績的平均數(shù)均是9.1環(huán),方差分別是S2=1.2,S2=1.6,則關于甲、乙兩人在這次射擊訓練中成績穩(wěn)定的描述正確的是( 。

A. 甲比乙穩(wěn)定 B. 乙比甲穩(wěn)定

C. 甲和乙一樣穩(wěn)定 D. 甲、乙穩(wěn)定性沒法對比

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】13位同學參加學校組織的才藝表演比賽.已知他們所得的分數(shù)互不相同,共設7個獲獎名額.某同學知道自己的比賽分數(shù)后,要判斷自己能否獲獎,在下列13名同學成績的統(tǒng)計量中只需知道一個量,它是(  。

A. 眾數(shù) B. 方差 C. 中位數(shù) D. 平均數(shù)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若等邊三角形的一邊長為4厘米,則它的周長為________厘米

查看答案和解析>>

同步練習冊答案