分析 (1)要證明FB2=FE•FA,只要證明△FBE∽△FAB即可,根據(jù)題目中的條件可以找到兩個(gè)三角形相似的條件,本題得以解決;
(2)根據(jù)(1)中的結(jié)論可以得到AE的長(zhǎng),然后根據(jù)△ABE與△BEF如果底邊分別為AE和EF,則底邊上的高相等,面積之比就是AE和EF的比值.
解答 (1)證明:∵AB∥CD,
∴∠A=∠D.
又∵∠CBF=∠D,
∴∠A=∠CBF,
∵∠BFE=∠AFB,
∴△FBE∽△FAB,
∴$\frac{FB}{FA}=\frac{FE}{FB}$
∴FB2=FE•FA;
(2)∵FB2=FE•FA,BF=3,EF=2
∴32=2×(2+AE)
∴$AE=\frac{5}{2}$
∴$\frac{AE}{EF}=\frac{5}{4}$,
∴△ABE與△BEF的面積之比為5:4.
點(diǎn)評(píng) 本題考查相似三角形的判定與性質(zhì),解題的關(guān)鍵是明確題意,找出所求問(wèn)題需要的條件.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | a6÷a2=a3 | B. | a•a=2a | C. | (a4)3=a12 | D. | a2+a2=2a4 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 當(dāng)r=2時(shí),直線AB與⊙C相交 | B. | 當(dāng)r=3時(shí),直線AB與⊙C相離 | ||
C. | 當(dāng)r=2.4時(shí),直線AB與⊙C相切 | D. | 當(dāng)r=4時(shí),直線AB與⊙C相切 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2016+671$\sqrt{3}$ | B. | 2016+672$\sqrt{3}$ | C. | 2017+672$\sqrt{3}$ | D. | 2016+673$\sqrt{3}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com