【題目】如圖,直線(xiàn)直線(xiàn)AD與,分別相交于點(diǎn)B,C,圖中三個(gè)角三者之間的關(guān)系,下列式子中表述正確的是
A.B.C.D.
【答案】D
【解析】
根據(jù)三角形內(nèi)角和定理的推論可得到∠β=∠γ+∠DCE,將∠DCE用∠α代換掉,再根據(jù)平行線(xiàn)的性質(zhì)可得∠α=∠ACE,而∠ACE+∠DCE=180°,合理進(jìn)行等量代換即可.
∵ (已知),
∴∠α=∠ACE(兩條平行直線(xiàn)被第三條直線(xiàn)所截,內(nèi)錯(cuò)角相等).
∵∠ACE+∠DCE=180°(平角的定義),
∴∠α+∠DCE=180°(等量代換).
∴∠DCE=180°-∠α(等式的基本性質(zhì)).
∵∠β=∠γ+∠DCE(三角形內(nèi)角和定理的推論),
∴∠β=∠γ+180°-∠α(等量代換).
即∠α+∠β-∠γ=180°.
故選D
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方形ABCD紙片中,若沿折痕EG對(duì)折,則頂點(diǎn)B落在AD邊上的點(diǎn)F處,頂點(diǎn)C落在點(diǎn)N處,點(diǎn)M是FN與DC交點(diǎn),且AD=8.
(1)當(dāng)點(diǎn)F是AD的中點(diǎn)時(shí),求△FDM的周長(zhǎng);
(2)當(dāng)點(diǎn)F不與點(diǎn)A,D和AD的中點(diǎn)重合時(shí),若AE+GD=19,求AF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:四邊形ACDE為平行四邊形,延長(zhǎng)EA至點(diǎn)B,使EA=BA,連接BD交AC于點(diǎn)F,連接BC
(1)求證:AD=BC.
(2)若BD=DE,當(dāng)∠E= °時(shí),四邊形ABCD為正方形請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法正確的是( 。
A.了解全國(guó)中學(xué)生最喜愛(ài)哪位歌手,適合全面調(diào)查.
B.甲乙兩種麥種,連續(xù)3年的平均畝產(chǎn)量相同,它們的方差為:S甲2=5,S乙2=0.5,則甲麥種產(chǎn)量比較穩(wěn).
C.某次朗讀比賽中預(yù)設(shè)半數(shù)晉級(jí),某同學(xué)想知道自己是否晉級(jí),除知道自己的成績(jī)外,還需要知道平均成績(jī).
D.一組數(shù)據(jù):3,2,5,5,4,6的眾數(shù)是5.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一艘漁船位于燈塔A的南偏西75°方向的B處,距離A處30海里,漁船沿北偏東30°方向追尋魚(yú)群,航行一段時(shí)間后,到達(dá)位于A處北偏西20°方向的C處,漁船出現(xiàn)了故障立即向正在燈塔A處的巡邏船發(fā)出求救信號(hào).巡邏船收到信號(hào)后以40海里每小時(shí)的速度前往救助,請(qǐng)問(wèn)巡邏船多少分鐘能夠到達(dá)C處?(參考數(shù)據(jù):≈1.4,sin40°≈0.64,cos40°≈0.77,tan40°≈0.84,最后結(jié)果精確到1分鐘).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方形ABCD中,E,F分別是邊BC、CD上的點(diǎn),BE=CF,AF與DE相交于點(diǎn)O,CG⊥DE,垂足為G.,求證:AD=AOAF;
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,矩形ABCD的對(duì)角線(xiàn)AC經(jīng)過(guò)坐標(biāo)原點(diǎn)O,矩形的邊分別平行于坐標(biāo)軸,點(diǎn)B在函數(shù)(k≠0,x>0)的圖象上,點(diǎn)D的坐標(biāo)為(﹣4,1),則k的值為( )
A.B.C.4D.﹣4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑,BE是弦,點(diǎn)D是弦BE上一點(diǎn),連接OD并延長(zhǎng)交⊙O于點(diǎn)C,連接BC,過(guò)點(diǎn)D作FD⊥OC交⊙O的切線(xiàn)EF于點(diǎn)F.
(1)求證:∠CBE=∠F;
(2)若⊙O的半徑是2,點(diǎn)D是OC中點(diǎn),∠CBE=15°,求線(xiàn)段EF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某超市預(yù)測(cè)某飲料有發(fā)展前途,用1600元購(gòu)進(jìn)一批飲料,面市后果然供不應(yīng)求,又用6000元購(gòu)進(jìn)這批飲料,第二批飲料的數(shù)量是第一批的3倍,但單價(jià)比第一批貴2元.
(1)第一批飲料進(jìn)貨單價(jià)多少元?
(2)若二次購(gòu)進(jìn)飲料按同一價(jià)格銷(xiāo)售,兩批全部售完后,獲利不少于1200元,那么銷(xiāo)售單價(jià)至少為多少元?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com