【題目】如圖,矩形ABCD中,EDC的中點,ADAB2,CPBP12,連接EP并延長,交AB的延長線于點F,APBE相交于點O.下列結論:①EP平分∠CEB;②PBEF;③PFEF2;④EFEP4AOPO.其中正確的是( 。

A. ①②③B. ①②④C. ①③④D. ③④

【答案】B

【解析】

由條件設AD=x,AB=2x,就可以表示出CP=x,BP=x,用三角函數(shù)值可以求出∠EBC的度數(shù)和∠CEP的度數(shù),則∠CEP=BEP,運用勾股定理及三角函數(shù)值就可以求出就可以求出BF、EF的值,從而可以求出結論.

解:設AD=x,AB=2x

∵四邊形ABCD是矩形

AD=BC,CD=AB,∠D=C=ABC=90°.DCAB

BC=x,CD=2x

CPBP=12

CP=x,BP=x

EDC的中點,

CE=CD=x,

tanCEP==,tanEBC==

∴∠CEP=30°,∠EBC=30°

∴∠CEB=60°

∴∠PEB=30°

∴∠CEP=PEB

EP平分∠CEB,故①正確;

DCAB

∴∠CEP=F=30°,

∴∠F=EBP=30°,∠F=BEF=30°,

∴△EBP∽△EFB,

BE·BF=EF·BP

∵∠F=BEF

BE=BF

PB·EF,故②正確

∵∠F=30°,

PF=2PB=x,

過點EEGAFG

∴∠EGF=90°,

EF=2EG=2x

PF·EF=x·2x=8x2

2AD2=2×(x2=6x2

∴PF·EF2AD2,故③錯誤.

RtECP中,

∵∠CEP=30°,

EP=2PC=x

tanPAB==

∴∠PAB=30°

∴∠APB=60°

∴∠AOB=90°

RtAOBRtPOB中,由勾股定理得,

AO=xPO=x

4AO·PO=4×x·x=4x2

EF·EP=2x·x=4x2

EF·EP=4AO·PO.故④正確.

故選,B

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知AB為⊙O的直徑,點C為⊙O上一點,點DAB延長線一點,連接AC

()如圖①,OB=BD,若DC與⊙O相切,求∠D和∠A的大小;

()如圖②,CD與⊙O交于點EAFCD于點F連接AE,若∠EAB=18°,求∠FAC的大。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校開展了“互助、平等、感恩、和諧、進取”主題班會活動,活動后,就活動的

5個主題進行了抽樣調查(每位同學只選取最關注的一個),根據(jù)調查結果繪制了兩幅不完

整的統(tǒng)計圖,根據(jù)圖中提供的信息,解答下列問題:

(1)這次調查的學生共有多少名?

(2)請將條形統(tǒng)計圖補充完整;

(3)在扇形統(tǒng)計圖中“進取”部分扇形的圓心角是   度;

(4)若該校學生人數(shù)為800人,請根據(jù)上述調查結果,估計該校學生中“感恩”的人數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知AB是O的直徑,點C、D在O上,點E在O外,EAC=B=60°.

(1)求ADC的度數(shù);

(2)求證:AE是O的切線.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知△ABC,∠ACB=90°,BC=3,AC=4,小紅按如下步驟作圖:

分別以A、C為圓心,以大于AC的長為半徑在AC兩邊作弧,交于兩點M、N;

連接MN,分別交AB、AC于點D、O;

CCE∥ABMN于點E,連接AE、CD.

則四邊形ADCE的周長為( 。

A. 10 B. 20 C. 12 D. 24

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,二次函數(shù) yax2+bx+c 的圖象交 x 軸于A、B 兩點,交 y 軸于 C 點,P y 軸上的一個動點,已知 A(﹣2,0)、C(0,﹣2,且拋物線的對稱軸是直線 x=1.

(1)求此二次函數(shù)的解析式;

(2)連接 PB,則 PC+PB 的最小值是 ;

(3)連接 PA、PB,P 點運動到何處時,使得APB=60°,請求出 P 點坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,直線l與直線,直線分別交于點A,B,直線與直線交于點

1)求直線軸的交點坐標;

2)橫、縱坐標都是整數(shù)的點叫做整點.記線段圍成的區(qū)域(不含邊界)為

時,結合函數(shù)圖象,求區(qū)域內的整點個數(shù);

若區(qū)域內沒有整點,直接寫出的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,拋物線軸相交于點,,與軸相交于點,點為拋物線的頂點,軸于點,且

1)求拋物線的解析式;

2)做點點關于對稱軸對稱,連接,過點,過點相交于點,若,求點的坐標;

3)在(2)的條件下,點是第一象限內拋物線上一點,連接相交于點,過點軸于點,相交于,連接,若,求點的坐標和的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形為平行四邊形,的中點,連接并延長交 的延長線于點

1)求證:△≌△;

2)過點于點的中點.判斷的位置關系,并說明理由.

查看答案和解析>>

同步練習冊答案