【題目】如圖,已知點(diǎn)P為∠AOB的角平分線上的一定點(diǎn),D是射線OA上的一定點(diǎn),E是OB上的某一點(diǎn),滿足PE=PD,則∠OEP與∠ODP的數(shù)量關(guān)系是
【答案】∠OEP=∠ODP或∠OEP+∠ODP=180°
【解析】解:∠OEP=∠ODP或∠OEP+∠ODP=180°,理由如下:
以O(shè)為圓心,以O(shè)D為半徑作弧,交OB于E2 , 連接PE2 , 如圖所示:
∵在△E2OP和△DOP中, ,
∴△E2OP≌△DOP(SAS),
∴E2P=PD,
即此時點(diǎn)E2符合條件,此時∠OE2P=∠ODP;
以P為圓心,以PD為半徑作弧,交OB于另一點(diǎn)E1 , 連接PE1 ,
則此點(diǎn)E1也符合條件PD=PE1 ,
∵PE2=PE1=PD,
∴∠PE2E1=∠PE1E2 ,
∵∠OE1P+∠E2E1P=180°,
∵∠OE2P=∠ODP,
∴∠OE1P+∠ODP=180°,
∴∠OEP與∠ODP所有可能的數(shù)量關(guān)系是:∠OEP=∠ODP或∠OEP+∠ODP=180°,
故答案為:∠OEP=∠ODP或∠OEP+∠ODP=180°.
以O(shè)為圓心,以O(shè)D為半徑作弧,交OB于E2 , 連接PE2 , 根據(jù)SAS證△E2OP≌△DOP,推出E2P=PD,得出此時點(diǎn)E2符合條件,此時∠OE2P=∠ODP;以P為圓心,以PD為半徑作弧,交OB于另一點(diǎn)E1 , 連接PE1 , 根據(jù)等腰三角形性質(zhì)推出∠PE2E1=∠PE1E2 , 求出∠OE1P+∠ODP=180°即可.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若一個多邊形的邊數(shù)增加2倍,它的外角和( )
A. 擴(kuò)大2倍 B. 縮小2倍 C. 保持不變 D. 無法確定
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一枚炮彈射出x秒后的高度為y米,且y與x之間的關(guān)系為y=ax2+bx+c(a≠0),若此炮彈在第3.2秒與第5.8秒時的高度相等,則在下列時間中炮彈所在高度最高的是( )
A.第3.3s
B.第4.3s
C.第5.2s
D.第4.6s
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】由于霧霾天氣頻發(fā),市場上防護(hù)口罩出現(xiàn)熱銷,某醫(yī)藥公司每月固定生產(chǎn)甲、乙兩種型號的防霧霾口罩共20萬只,且所有產(chǎn)品當(dāng)月全部售出,原料成本、銷售單價及工人生產(chǎn)提成如表:
(1)若該公司五月份的銷售收入為300萬元,求甲、乙兩種型號的產(chǎn)品分別是多少萬只?
(2)公司實行計件工資制,即工人每生產(chǎn)一只口罩獲得一定金額的提成,如果公司六月份投入總成本(原料總成本+生產(chǎn)提成總額)不超過239萬元,應(yīng)怎樣安排甲、乙兩種型號的產(chǎn)量,可使該月公司所獲利潤最大?并求出最大利潤(利潤=銷售收入﹣投入總成本)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某超市銷售有甲、乙兩種商品,甲商品每件進(jìn)價10元,售價15元;乙商品每件進(jìn)價30元,售價40元.
(1)若該超市一次性購進(jìn)兩種商品共80件,且恰好用去1600元,問購進(jìn)甲、乙兩種商品各多少件?
(2)若該超市要使兩種商品共80件的購進(jìn)費(fèi)用不超過1640元,且總利潤(利潤=售價﹣進(jìn)價)不少于600元.請你幫助該超市設(shè)計相應(yīng)的進(jìn)貨方案,并指出使該超市利潤最大的方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AD為△ABC的高,BE為△ABC的角平分線,若∠EBA=34°,∠AEB=72°.
(1)求∠CAD和∠BAD的度數(shù);
(2)若點(diǎn)F為線段BC上任意一點(diǎn),當(dāng)△EFC為直角三角形時,試求∠BEF的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com