【題目】如圖,點O是△ABC內(nèi)一點,連結(jié)OB、OC,并將AB、OB、OC、AC的中點D、E、F、G依次連結(jié),得到四邊形DEFG.
(1)求證:四邊形DEFG是平行四邊形;
(2)若M為EF的中點,OM=3,∠OBC和∠OCB互余,求DG的長度.
【答案】
(1)證明:∵D、G分別是AB、AC的中點,
∴DG∥BC,DG= BC,
∵E、F分別是OB、OC的中點,
∴EF∥BC,EF= BC,
∴DG=EF,DG∥EF,
∴四邊形DEFG是平行四邊形
(2)解:∵∠OBC和∠OCB互余,
∴∠OBC+∠OCB=90°,
∴∠BOC=90°,
∵M(jìn)為EF的中點,OM=3,
∴EF=2OM=6.
由(1)有四邊形DEFG是平行四邊形,
∴DG=EF=6
【解析】(1)根據(jù)三角形的中位線平行于第三邊并且等于第三邊的一半可得EF∥BC且EF= BC,DG∥BC且DG= BC,從而得到DE=EF,DG∥EF,再利用一組對邊平行且相等的四邊形是平行四邊形證明即可;(2)先判斷出∠BOC=90°,再利用直角三角形斜邊的中線等于斜邊的一半,求出EF即可.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將一副三角板按如圖放置,則下列結(jié)論:
①如果∠2=30°,則有AC∥DE;
②∠BAE+∠CAD =180°;
③如果BC∥AD,則有∠2=45°;
④如果∠CAD=150°,必有∠4=∠C;
正確的有( )
A. ①②③ B. ①②④ C. ①③④ D. ①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,AD∥BC,E為CD的中點,連接AE、BE,BE⊥AE,延長AE交BC的延長線于點F.
求證:(1)FC=AD;
(2)AB=BC+AD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1是一個長為2m、寬為2n的長方形,沿圖中虛線用剪刀平均分成4 個小長方形,然后按圖2的形狀拼成一個正方形.
(1)圖2中陰影部分的面積為 ;
(2)觀察圖2,請你寫出式子(m+n)2,(m-n)2,mn之間的等量關(guān)系: ;
(3)若x+y=-6,xy=2.75,求x-y的值
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,OA⊥OB,AB⊥x軸于點C,點A( ,1)在反比例函數(shù)y= 的圖象上.
(1)求反比例函數(shù)y= 的表達(dá)式;
(2)在x軸的負(fù)半軸上存在一點P,使得S△AOP= S△AOB , 求點P的坐標(biāo);
(3)若將△BOA繞點B按逆時針方向旋轉(zhuǎn)60°得到△BDE.直接寫出點E的坐標(biāo),并判斷點E是否在該反比例函數(shù)的圖象上.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是二次函數(shù)y=ax2+bx+c(a≠0)圖象的一部分,對稱軸為x= ,且經(jīng)過點(2,0),有下列說法:①abc<0;②a+b=0;③a﹣b+c=0;④若(0,y1),(1,y2)是拋物線上的兩點,則y1=y2 . 上述說法正確的是( )
A.①②③④
B.③④
C.①③④
D.①②
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=﹣x2+bx+c與x軸交于點A(﹣1,0)、B(3,0).
(1)求b、c的值;
(2)如圖1直線y=kx+1(k>0)與拋物線第一象限的部分交于D點,交y軸于F點,交線段BC于E點.求 的最大值;
(3)如圖2,拋物線的對稱軸與拋物線交于點P、與直線BC相交于點M,連接PB.問在直線BC下方的拋物線上是否存在點Q,使得△QMB與△PMB的面積相等?若存在,求出點Q的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC 中,∠C=90°,∠A=34°,D,E 分別為 AB,AC 上一點,將△BCD,△ADE 沿 CD,DE 翻折,點 A,B 恰好重合于點 P 處,則∠ACP=_______________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com