【題目】在△ABC中,∠C=90°,AC=BC,點(diǎn)D在射線BC上(不與點(diǎn)B、C重合),連接AD,將AD繞點(diǎn)D順時(shí)針旋轉(zhuǎn)90°得到DE,連接BE.
(1)如圖1,點(diǎn)D在BC邊上.
①依題意補(bǔ)全圖1;
②作DF⊥BC交AB于點(diǎn)F,若AC=8,DF=3,求BE的長(zhǎng);
(2)如圖2,點(diǎn)D在BC邊的延長(zhǎng)線上,用等式表示線段AB、BD、BE之間的數(shù)量關(guān)系(直接寫出結(jié)論).
【答案】(1)①圖見解析;②BE=5;(2)見解析.
【解析】
(1)①根據(jù)題意畫出圖形即可;
②根據(jù)SAS證明△ADF≌△EDB,根據(jù)全等三角形的性質(zhì)得到AF=EB.在△ABC和△DFB中,根據(jù)勾股定理得到AB=8,BF=3.再根據(jù)線段的和差關(guān)系得到AF=AB-BF=5,即BE=5.
(2)根據(jù)AAS證明△ACD≌△DFE,根據(jù)全等三角形的性質(zhì)得到EF=DC.再根據(jù)等腰直角三角形的性質(zhì)得到EF=BE,BC=AB,根據(jù)等量關(guān)系即可得到BD=BE+AB.
(1)①補(bǔ)全圖形,如圖1所示.
②如圖1②,
由題意可知AD=DE,∠ADE=90°.
∵DF⊥BC,
∴∠FDB=90°.
∴∠ADF=∠EDB.
∵∠C=90°,AC=BC,
∴∠ABC=∠DFB=45°.
∴DB=DF.
∴△ADF≌△EDB.
∴AF=EB.
在△ABC和△DFB中,
∵AC=8,DF=3,
∴A=8,BF=3.
AF=AB-BF=5
即BE=5.
(2)如圖2,
BD=BE+AB.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)D是∠AOB的平分線OC上任意一點(diǎn),過(guò)D作DE⊥OB于E,以DE為半徑作⊙D,
①判斷⊙D與OA的位置關(guān)系, 并證明你的結(jié)論。
②通過(guò)上述證明,你還能得出哪些等量關(guān)系?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知⊙O的直徑AE=10cm,∠B=∠EAC,則AC的長(zhǎng)為( )
A. 5cm B. 5cm C. 5 cm D. 6cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn),過(guò)點(diǎn)做直線平行于軸,點(diǎn)關(guān)于直線對(duì)稱點(diǎn)為.
(1)求點(diǎn)的坐標(biāo);
(2)點(diǎn)在直線上,且位于軸的上方,將沿直線翻折得到,若點(diǎn)恰好落在直線上,求點(diǎn)的坐標(biāo)和直線的解析式;
(3)設(shè)點(diǎn)在直線上,點(diǎn)在直線上,當(dāng)為等邊三角形時(shí),求點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】中踏集團(tuán)銷售某種商品,每件進(jìn)價(jià)為10元。在銷售過(guò)程中發(fā)現(xiàn),平均每天的銷售量y(件)與銷售價(jià)x(元/件)(不低于進(jìn)價(jià))之間的關(guān)系可近似的看做一次函數(shù):;
(1)求中踏集團(tuán)平均每天銷售這種商品的利潤(rùn)w(元)與銷售價(jià)x之間的函數(shù)關(guān)系式;
(2)當(dāng)這種商品的銷售價(jià)為多少元時(shí),可以獲得最大利潤(rùn),最大利潤(rùn)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我市少體校為了從甲、乙兩名運(yùn)動(dòng)員中選出一名運(yùn)動(dòng)員參加省運(yùn)動(dòng)會(huì)百米比賽,組織了選拔測(cè)試,分別對(duì)兩人進(jìn)行了五次測(cè)試,成績(jī)(單位:秒)以及平均數(shù)、方差如表:
甲 | 13 | 13 | 14 | 16 | 18 | x=14.8 | S=3.76 |
乙 | 14 | 14 | 15 | 15 | 16 | x=14.8 | S=0.56 |
學(xué)校決定派乙運(yùn)動(dòng)員參加比賽,理由是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】2013年6月,某中學(xué)結(jié)合廣西中小學(xué)閱讀素養(yǎng)評(píng)估活動(dòng),以“我最喜愛(ài)的書籍”為主題,對(duì)學(xué)生最喜愛(ài)的一種書籍類型進(jìn)行隨機(jī)抽樣調(diào)查,收集整理數(shù)據(jù)后,繪制出以下兩幅未完成的統(tǒng)計(jì)圖,請(qǐng)根據(jù)圖1和圖2提供的信息,解答下列問(wèn)題:
(1)在這次抽樣調(diào)查中,一共調(diào)查了多少名學(xué)生?
(2)請(qǐng)把折線統(tǒng)計(jì)圖(圖1)補(bǔ)充完整;
(3)求出扇形統(tǒng)計(jì)圖(圖2)中,體育部分所對(duì)應(yīng)的圓心角的度數(shù);
(4)如果這所中學(xué)共有學(xué)生1800名,那么請(qǐng)你估計(jì)最喜愛(ài)科普類書籍的學(xué)生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線y=﹣4x+4與x軸、y軸分別交于A、B兩點(diǎn),以AB為邊在第一象限作正方形ABCD,將正方形ABCD沿x軸負(fù)方向平移a個(gè)單位長(zhǎng)度后,點(diǎn)C恰好落在雙曲線在第一象限的分支上,則a的值是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,反比例函數(shù)與二次函數(shù)y=k(x2+x-1)的圖象交于點(diǎn)A(1,k)和點(diǎn)B(-1,-k).
(1)當(dāng)k=-2時(shí),求反比例函數(shù)的解析式;
(2)要使反比例函數(shù)與二次函數(shù)都是y隨著x的增大而增大,求k應(yīng)滿足的條件以及x的取值范圍.
(3)設(shè)二次函數(shù)的圖象的頂點(diǎn)為Q,當(dāng)△ABQ是以AB為斜邊的直角三角形時(shí),求k的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com