【題目】如圖,在△ABC中,AB=AC,D是BA延長線上一點,E是AC的中點.
(1)利用尺規(guī)作出∠DAC的平分線AM,連接BE并延長交AM于點F,(要求在圖中標明相應字母,保留作圖痕跡,不寫作法);
(2)試判斷AF與BC有怎樣的位置關系與數(shù)量關系,并說明理由.

【答案】
(1)解:如圖所示:


(2)解:AF∥BC且AF=BC

證明:∵AB=AC

∴∠ABC=∠C

∵∠DAC=∠ABC+∠C

∴∠DAC=2∠C

由作圖可知∠DAC=2∠FAC

∴∠C=∠FAC

∴AF∥BC;

∵E是AC的中點

∴AE=CE.

在△AEF和△CEB中,

∴△AEF≌△CEB (ASA)

∴AF=BC


【解析】根據(jù)等腰三角形的性質,可得兩底角相等,根據(jù)三角形的外角的性質,可得∵∠DAC=∠ABC+∠C,根據(jù)內錯角相等,可得兩直線平行,根據(jù)ASA,可得兩個三角形全等,根據(jù)全等三角形的性質,可得證明結論.
【考點精析】通過靈活運用等腰三角形的性質,掌握等腰三角形的兩個底角相等(簡稱:等邊對等角)即可以解答此題.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖1=2,CFAB,DEAB,求證:FGBC.

證明:CFABDEAB 已知

∴∠BED=90°,BFC=90°

∴∠BED=BFC ( )

EDFC

∴∠1=BCF ( )

∵∠2=1 已知

∴∠2=BCF ( )

FGBC ( )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是一張平行四邊形紙片ABCD,要求利用所學知識將它變成一個菱形,甲、乙兩位同學的作法分別如下:

對于甲、乙兩人的作法,可判斷(  )

A. 甲正確,乙錯誤 B. 甲錯誤,乙正確

C. 甲、乙均正確 D. 甲、乙均錯誤

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知△ABC的面積為18,點D在線段AC上,點F在線段BC的延長線上,且,四邊形DCFE是平行四邊形,則圖中陰影部分的面積為

A. 8 B. 6 C. 4 D. 3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,M△ABC的邊BC的中點,AN平分∠BAC,BN⊥AN于點N,延長BNAC于點D,已知AB=10BC=15,MN=3

1)求證:BN=DN;

2)求△ABC的周長

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知矩形紙片ABCD中,AD=9cm,AB=3cm,將其折疊,使點D 與點B重合.

(1)求折疊后DE的長;

(2)求折痕EF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】a,b,c是直角三角形的三條邊長斜邊c上的高的長是h,給出下列結論

a2,b2,c2的長為邊的三條線段能組成一個三角形

, , 的長為邊的三條線段能組成一個三角形

a+bc+h,h的長為邊的三條線段能組成直角三角形

, 的長為邊的三條線段能組成直角三角形

其中所有正確結論的序號為______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形ABCD中,BC、AD不平行,且BAD+ADC=270°,E、F分別是AD、BC的中點,已知EF=4,求AB2+CD2的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】解決問題:

一輛貨車從超市出發(fā),向東走了3千米到達小彬家,繼續(xù)走2.5千米到達小穎家,然后向西走了10千米到達小明家,最后回到超市.

(1)以超市為原點,以向東的方向為正方向,用1個單位長度表示1千米,在數(shù)軸上表示出小明家,小彬家,小穎家的位置.

(2)小明家距小彬家多遠?

(3)貨車一共行駛了多少千米?

(4)貨車每千米耗油0.2升,這次共耗油多少升?

查看答案和解析>>

同步練習冊答案