如圖1所示,已知在△ABD和△AEC中,,
【小題1】如圖1,試說明:;
【小題2】如圖1,若,
①試求:的度數(shù)
②將繞點A逆時針旋轉(zhuǎn)度(),問當(dāng)為多少度時,直線CE分別與的三邊所在的直線垂直?(請直接寫出答案)。
【小題3】如圖2將繞點A逆時針旋轉(zhuǎn)后得到,并使點D,E,A三點在同一條直線上,若,連接CD,若的面積為6cm2,你能求出四邊形ABDC的面積嗎?若能,請求出來;若不能,請你說明理由。

【小題1】=91°
【小題2】、  
【小題3】四邊形ABDC的面積為18 cm2解析:
(1)解:∵
  即
又∵,
(SAS)--------------2分
(2)①由(1)知=--------------2分
、 --------------3分
(3)能求出四邊形ABDC的面積。
是由繞點A逆時針旋轉(zhuǎn)而得 
    


  即點E為AD中點。
的面積為6cm2
的面積也為6cm2,的面積為6cm2
∴ 四邊形ABDC的面積為18 cm2    
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖1所示,已知在△ABC和△DEF中,AB=EF,∠B=∠E,EC=BD
(1)試說明:△ABC≌△FED;
(2)若圖形經(jīng)過平移和旋轉(zhuǎn)后得到圖2,且有∠EDB=25°,∠A=66°,試求∠AMD的度數(shù);
(3)將圖形繼續(xù)旋轉(zhuǎn)后得到圖3,此時D,B,F(xiàn)三點在同一條直線上,若DB=2DF,連接EB,已知△EFB的面積為5cm2,你能求出四邊形ABED的面積嗎?若能,請求出來;若不能,請你說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖1所示,已知在△ABC和△DEF中,∠A=∠F=90°,∠B=∠E,EC=BD.
(1)試說明:△ABC≌△FED的理由;
(2)若圖形經(jīng)過平移和旋轉(zhuǎn)后得到如圖2,若∠ADF=30°,∠E=37°,試求∠DHB的度數(shù);
(3)若將△ABC繼續(xù)繞點D旋轉(zhuǎn)后得到圖3,此時D、B、F三點在同一條直線上,若DF:FB=3:2,連接EB,已知△ABD的周長是12,且AB-AD=1,你能求出四邊形ABED的面積嗎?若能,請求出來;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖1所示,已知在△ABD和△AEC中,AC=AD,∠CAD=∠BAE,AB=AE
(1)如圖1,試說明:△ABD≌△AEC;
(2)如圖1,若∠CAD=35°,∠E=56°,∠D=40°,
①試求:∠EOB的度數(shù);
②將△AEC繞點A逆時針旋轉(zhuǎn)α度(0°<α<180°),問當(dāng)α為多少度時,直線CE分別與△ABD的三邊所在的直線垂直?(請直接寫出答案).
(3)如圖2將△AEC繞點A順時針旋轉(zhuǎn)后得到△ABD,并使點D,E,A三點在同一條直線上,若AD=2AB,連接CD,若△CDE的面積為6cm2,你能求出四邊形ABDC的面積嗎?若能,請求出來;若不能,請你說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年浙江省寧波地區(qū)初一第二學(xué)期期中考試數(shù)學(xué)卷(帶解析) 題型:解答題

如圖1所示,已知在△ABD和△AEC中,,
【小題1】如圖1,試說明:;
【小題2】如圖1,若,,
①試求:的度數(shù)
②將繞點A逆時針旋轉(zhuǎn)度(),問當(dāng)為多少度時,直線CE分別與的三邊所在的直線垂直?(請直接寫出答案)。
【小題3】如圖2將繞點A逆時針旋轉(zhuǎn)后得到,并使點D,E,A三點在同一條直線上,若,連接CD,若的面積為6cm2,你能求出四邊形ABDC的面積嗎?若能,請求出來;若不能,請你說明理由。

查看答案和解析>>

同步練習(xí)冊答案