【題目】如圖,四邊形ABCD是平行四邊形,DE//AC,交BC的延長(zhǎng)線于點(diǎn)E,EF⊥AB于點(diǎn)F.求證:(1)BC=CE;(2)AD=CF.
【答案】見(jiàn)解析
【解析】試題分析:(1)由四邊形ABCD是平行四邊形,可得AD∥BC,AD=BC,又有DE//AC,可證四邊形ACED是平行四邊形,從而AD=CE,由等量代換知結(jié)論成立;
(2)由(1)得BC=CE,所以CF是直角三角形BEF斜邊的中線,再利用直角三角形的性質(zhì)證明AD=CF.
證明:(1)∵四邊形ABCD是平行四邊形,
∴AD=BC,AD//BC.
∵DE//AC,
∴四邊形ACED是平行四邊形,
∴AD=CE,
∴BC=CE;
(2)∵EF⊥AB,
∴∠BFE=90°,
∵BC=CE,
∵CF是Rt△BFE斜邊上的中線
∴CF=BC=BE,
∴AD=CF
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,銳角△ABC中,邊BC長(zhǎng)為3,高AH長(zhǎng)為2,矩形EFMN的邊MN在BC邊上,其余兩個(gè)頂點(diǎn)E,F(xiàn)分別在AB,AC邊上,EF交AH于點(diǎn)G.
(1)求的值;
(2)當(dāng)EN為何值時(shí),矩形EFMN的面積為△ABC面積的四分之一.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】學(xué)校為了獎(jiǎng)勵(lì)初三優(yōu)秀畢業(yè)生,計(jì)劃購(gòu)買一批平板電腦和一批學(xué)習(xí)機(jī),經(jīng)投標(biāo),購(gòu)買1臺(tái)平板電腦3 000元,購(gòu)買1臺(tái)學(xué)習(xí)機(jī)800元.
(1)學(xué)校根據(jù)實(shí)際情況,決定購(gòu)買平板電腦和學(xué)習(xí)機(jī)共100臺(tái),要求購(gòu)買的總費(fèi)用不超過(guò)168 000元,則購(gòu)買平板電腦最多多少臺(tái)?
(2)在(1)的條件下,購(gòu)買學(xué)習(xí)機(jī)的臺(tái)數(shù)不超過(guò)平板電腦臺(tái)數(shù)的1.7倍.請(qǐng)問(wèn)有哪幾種購(gòu)買方案?哪種方案最省錢?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,A、B、C是數(shù)軸上的三點(diǎn),O是原點(diǎn),BO=3,AB=2BO,5AO=3CO.
(1)寫出數(shù)軸上點(diǎn)A、C表示的數(shù);
(2)點(diǎn)P、Q分別從A、C同時(shí)出發(fā),點(diǎn)P以每秒2個(gè)單位長(zhǎng)度的速度沿?cái)?shù)軸向右勻速運(yùn)動(dòng),點(diǎn)Q以每秒6個(gè)單位長(zhǎng)度的速度沿?cái)?shù)軸向左勻速運(yùn)動(dòng),M為線段AP的中點(diǎn),點(diǎn)N在線段CQ上,且CN=CQ.設(shè)運(yùn)動(dòng)的時(shí)間為t(t>0)秒.
①數(shù)軸上點(diǎn)M、N表示的數(shù)分別是 (用含t的式子表示);
②t為何值時(shí),M、N兩點(diǎn)到原點(diǎn)的距離相等?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平行四邊形ABCD中,AM、CN都是BD的垂線,M、N是垂足.
求證:(1)AM=CN;(2)∠MAN=∠NCM.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,⊙O與正方形ABCD的兩邊AB、AD相切,且DE與⊙O相切于E點(diǎn).若正方形ABCD的周長(zhǎng)為44,且DE=6,則sin∠ODE=
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知O為直線AB上一點(diǎn),∠COE是直角,OF平分∠AOE.
(1)如圖①,若∠COF=34°,則∠BOE=________;若∠COF=n°,則∠BOE=________;∠BOE與∠COF的數(shù)量關(guān)系為_(kāi)_______________.
(2)當(dāng)射線OE繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)到如圖②的位置時(shí),(1)中∠BOE與∠COF的數(shù)量關(guān)系是否仍然成立?請(qǐng)說(shuō)明理由.
(3)在圖③中,若∠COF=65°,在∠BOE的內(nèi)部是否存在一條射線OD,使得2∠BOD與∠AOF的和等于∠BOE與∠BOD的差的一半?若存在,請(qǐng)求出∠BOD的度數(shù);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知線段AB,按下列要求完成畫圖和計(jì)算:
(1)延長(zhǎng)線段AB到點(diǎn)C,使BC=2AB,取AC中點(diǎn)D;
(2)在(1)的條件下,如果AB=4,求線段BD的長(zhǎng)度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知a,b,c滿足
(1)求a,b,c的值;
(2)試問(wèn)以a,b,c為邊能否構(gòu)成三角形?若能構(gòu)成三角形,求出三角形的周長(zhǎng);若不能構(gòu)成三角形,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com