【題目】已知如圖所示 AD、AE分別是△ABC的中線、高,且AB=5cm,AC=3cm,,△ABD△ACD的周長之差為_________,△ABD△ACD的面積關(guān)系為_________.

【答案】2cm 相等

【解析】

根據(jù)△ABD與△ACD的周長的差=AB-AC,三角形的中線把三角形分成面積相等的兩個(gè)三角形,由此即可解答

△ABD的周長=AB+AD+BD,△ACD的周長=AC+AD+CD,

∵ADBC的中線,

∴BD=CD,

∵AB=5cm,AC=3cm,

∴△ABD的周長-△ACD的周長=AB+AD+BD-AC-AD-CD=AB-AC=2(cm),

∵△ABD與△ACD的底相等,高都是AE,

∴它們的面積相等.

故答案為:2cm;相等.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】大潤發(fā)超市進(jìn)了一批成本為8元/個(gè)的文具盒.調(diào)查發(fā)現(xiàn):這種文具盒每個(gè)星期的銷售量y(個(gè))與它的定價(jià)x(元/個(gè))的關(guān)系如圖所示:

(1)求這種文具盒每個(gè)星期的銷售量y(個(gè))與它的定價(jià)x(元/個(gè))之間的函數(shù)關(guān)系式(不必寫出自變量x的取值范圍);
(2)每個(gè)文具盒的定價(jià)是多少元時(shí),超市每星期銷售這種文具盒(不考慮其他因素)可獲得的利潤為1200元?
(3)若該超市每星期銷售這種文具盒的銷售量不少于115個(gè),且單件利潤不低于4元(x為整數(shù)),當(dāng)每個(gè)文具盒定價(jià)多少元時(shí),超市每星期利潤最高?最高利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在水平地面點(diǎn)A處有一網(wǎng)球發(fā)射器向空中發(fā)射網(wǎng)球,網(wǎng)球飛行路線是一條拋物線,在地面上落點(diǎn)為B.有人在直線AB上點(diǎn)C(靠點(diǎn)B一側(cè))豎直向上擺放無蓋的圓柱形桶,試圖讓網(wǎng)球落入桶內(nèi).已知AB=4米,AC=3米,網(wǎng)球飛行最大高度OM=5米,圓柱形桶的直徑CD為0.5米,高為0.3米(網(wǎng)球的體積和圓柱形桶的厚度忽略不計(jì)).

(1)如圖,建立直角坐標(biāo)系,求此拋物線的解析式;
(2)如果豎直擺放7個(gè)圓柱形桶時(shí),網(wǎng)球能不能落入桶內(nèi)?
(3)當(dāng)豎直擺放圓柱形桶至多多少個(gè)時(shí),網(wǎng)球可以落入桶內(nèi)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在5×4正方形網(wǎng)格中,有A,B,C三個(gè)格點(diǎn)(線與線的交點(diǎn)).

(1)若小正方形邊長為1,則AC= , AB=;
(2)在圖中再找出一個(gè)格點(diǎn)D,滿足:D與A,B,C三點(diǎn)中的兩點(diǎn)組成的三角形恰好與△ABC相似:∽△ABC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1在平面直角坐標(biāo)系中.等腰Rt△OAB的斜邊OA在x軸上.P為線段OB上﹣動(dòng)點(diǎn)(不與O,B重合).過P點(diǎn)向x軸作垂線.垂足為C.以PC為邊在PC的右側(cè)作正方形PCDM.OP= t、OA=3.設(shè)過O,M兩點(diǎn)的拋物線為y=ax2+bx.其頂點(diǎn)N(m,n)

(1)寫出t的取值范圍 , 寫出M的坐標(biāo):();
(2)用含a,t的代數(shù)式表示b;
(3)當(dāng)拋物線開向下,且點(diǎn)M恰好運(yùn)動(dòng)到AB邊上時(shí)(如圖2)
①求t的值;
②若N在△OAB的內(nèi)部及邊上,試求a及m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=﹣x2+2x+m.
(1)如果二次函數(shù)的圖象與x軸有兩個(gè)交點(diǎn),求m的取值范圍;
(2)如圖,二次函數(shù)的圖象過點(diǎn)A(3,0),與y軸交于點(diǎn)B,直線AB與這個(gè)二次函數(shù)圖象的對(duì)稱軸交于點(diǎn)P,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)的解析式為y=ax2+bx+c(a、b、c為常數(shù),a≠0),且a2+ab+ac<0,下列說法:
①b2﹣4ac<0;
②ab+ac<0;
③方程ax2+bx+c=0有兩個(gè)不同根x1、x2 , 且(x1﹣1)(1﹣x2)>0;
④二次函數(shù)的圖象與坐標(biāo)軸有三個(gè)不同交點(diǎn),
其中正確的個(gè)數(shù)是( )
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】古埃及人曾經(jīng)用如圖所示的方法畫直角:把一根長繩打上等距離的13個(gè)結(jié),然后以3個(gè)結(jié)間距、4個(gè)結(jié)間距、5個(gè)結(jié)間距的長度為邊長,用木樁釘成一個(gè)三角形,其中一個(gè)角便是直角,這樣做的道理是( 。

A. 直角三角形兩個(gè)銳角互補(bǔ)

B. 三角形內(nèi)角和等于180°

C. 如果三角形兩條邊長的平方和等于第三邊長的平方

D. 如果三角形兩條邊長的平方和等于第三邊長的平方,那么這個(gè)三角形是直角三角形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC內(nèi)接于⊙O,點(diǎn)D在半徑OB的延長線上,∠BCD=∠A=30°.

(1)試判斷直線CD與⊙O的位置關(guān)系,并說明理由;
(2)若⊙O的半徑長為1,求由弧BC、線段CD和BD所圍成的陰影部分面積.(結(jié)果保留π和根號(hào))

查看答案和解析>>

同步練習(xí)冊(cè)答案