【題目】下列兩個三角形中,一定全等的是()

A. 兩個等邊三角形

B. 有一個角是,腰相等的兩個等腰三角形

C. 有一條邊相等,有一個內(nèi)角相等的兩個等腰三角形

D. 有一個角是,底相等的兩個等腰三角形

【答案】D

【解析】

根據(jù)全等三角形的判定方法及等腰三角形的性質對各個選項進行分析,從而得到答案.

解:A、當兩個等邊三角形的對應邊不相等時,這兩個等邊三角形也不會全等,故本選項錯誤;

B、當該角不是對應角時,這兩個等腰三角形也不會全等,故本選項錯誤;

C、當兩個等腰三角形的對應邊與對應角不相等時,這兩個等腰三角形也不會全等,故本選項錯誤;

D、等腰三角形的100°角只能是頂角,則兩個底角是40°,它們對應相等,所以由全等三角形的判定定理ASAAAS證得它們?nèi)龋时具x項正確;

故選D

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,的直徑,若,,以為邊作圓的內(nèi)接正多邊形,則這個正多邊形是________邊形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,∠B=∠C,AB10cm,BC8cm,EAB的中點,點P在線段BC上以3cm/s的速度由點B向點C運動;同時,點Q在線段CA上由點C向點A運動,當點Q的速度為多少時,能夠使BPECQP全等?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在某公園的山頂上插了一面旗子,小帆站在D處測得山頂B的仰角是52°,沿CD方向水平前進9米到達建筑物EF的底端F處,在建筑物EF的頂端E處測得旗子AB的頂端A的仰角是45°,AB=12米,EF=10米,點A、B、C在同一直線上,AC⊥CF,EF⊥CF,求山BC的高(結果保留整數(shù))(參考數(shù)據(jù):sin52°≈0.79,cos52°≈0.62,tan52°≈1.28)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在直角坐標系中,先描出點,點.

1)描出點關于軸的對稱點的位置,寫出的坐標 ;

2)用尺規(guī)在軸上找一點,使的值最。ūA糇鲌D痕跡);

3)用尺規(guī)在軸上找一點,使(保留作圖痕跡).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,直線l是第一、三象限的角平分線.

實驗與探究:

1)由圖觀察易知A0,2)關于直線l的對稱點A′的坐標為(2,0),請在圖中分別標明B5,3)、C(﹣2,5)關于直線l的對稱點B′C′的位置,并寫出他們的坐標:B′_______、C′_______;

歸納與發(fā)現(xiàn):

2)結合圖形觀察以上三組點的坐標,你會發(fā)現(xiàn):坐標平面內(nèi)任一點Pab)關于第一、三象限的角平分線l的對稱點P′的坐標為________;

運用與拓展:

3)圖中在直線l上取一點Q,使QD1,-3),E-1,-4)兩點的距離之和最小,則點Q的坐標是____________。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,平面直角坐標系中,直線ABy=x+by軸于點A,交x軸于點B,SAOB=8

1)求點B的坐標和直線AB的函數(shù)表達式;

2)直線a垂直平分OBAB于點D,交x軸于點E,點P是直線a上一動點,且在點D的上方,設點P的縱坐標為m

①用含m的代數(shù)式表示ABP的面積;

②當SABP=6時,求點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD的邊長為2E在正方形外,,過DH,直線DH,EC交于點M,直線CE交直線AD于點,則下列結論正確的是(  )

;②;③;④若PD=3AD,則MD=

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】動手操作:
如圖,已知ABCD,A為圓心,小于AC長為半徑作圓弧,分別交AB,ACE,F兩點,再分別以點E,F為圓心,大于EF長為半徑作圓弧,兩條圓弧交于點P,作射線AP,交CD于點M.
問題解決:

(1)若∠ACD=78°,求∠MAB的度數(shù);
(2)CNAM,垂足為點N,求證:CAN≌△CMN.
實驗探究:
(3)直接寫出當∠CAB的度數(shù)為多少時?CAM分別為等邊三角形和等腰直角三角形.

查看答案和解析>>

同步練習冊答案