【題目】郵遞員騎摩托車從郵局出發(fā),先向西騎行2千米到達A村,繼續(xù)向西騎行3千米到達B村,然后向東騎行9千米到達C村,最后回到郵局.

(1)C村離A村多遠?

(2)若摩托車每10千米需1.5升汽油,郵遞員最后回到郵局時,一共用了多少升汽油?

【答案】(1);(2)

【解析】

(1)以郵局為原點,向東為正方向,則向西為負方向,用1cm表示1km,按此畫出數(shù)軸即可,直接計算出即可.

(2)計算出郵遞員行駛的總路程,即可得出正確答案.

解:(1)依據(jù)題意,以郵局為原點,向東為正方向,則向西為負方向,用1cm表示1km,畫出數(shù)軸為:

C點與A點距離為:2+4=6(千米);

(2)根據(jù)題意,郵遞員一共行駛了:

2+3+9+4=18(千米),

∵每10千米需1.5升汽油,

∴共用了18÷10×1.5=2.7升,

故一共用了2.7升汽油.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖為某三岔路口交通環(huán)島的簡化模型,在某高峰時刻,單位時間進出路口A,B,C的機動車輛數(shù)如圖所示.圖中x1,x2,x3分別表示該時段單位時間通過路段AB,BC,CA的機動車輛數(shù)(假設(shè)單位時間內(nèi)在上述路段中同一路段上駛?cè)肱c駛出的車輛數(shù)相等),則有( 。

A. x1x2x3 B. x1x3x2 C. x2x3x1 D. x3x2x1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】深化理解:

新定義:對非負實數(shù)x 四舍五入到個位的值記為

即:當(dāng)n為非負整數(shù)時,如果

反之,當(dāng)n為非負整數(shù)時,如果

例如:<0> = <0.48> = 0,<0.64> = <1.49> = 1,<2> = 2,<3.5> = <4.12> = 4,……

試解決下列問題:

(1)填空:①=________為圓周率); ②如果的取值范圍為____________________

(2)若關(guān)于x的不等式組的整數(shù)解恰有3個,求a的取值范圍.

(3)求滿足 的所有非負實數(shù)x的值

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在ABC中,DE、F分別是各邊的中點,AH是高,求證:∠DHFDEF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小麗一家利用元旦三天駕車到某景點旅游.小汽車出發(fā)前油箱有油36L,行駛ah后,途中在加油站加油若干bL.油箱中余油量Q(L)與行駛時間t(h)之間的關(guān)系如圖所示.根據(jù)圖象回答下列問題:

小汽車行駛________h后加油, 中途加油__________L;

求加油前油箱余油量Q與行駛時間t的函數(shù)關(guān)系式;

如果加油站距景點200km,車速為80km/h,要到達目的

地,油箱中的油是否夠用?請說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在正方形ABCD中,點E,F分別在邊BCCD上,且∠EAF=∠CEF=45°.

(1)延長CBG點,使得BG=DF (如圖①),求證:△AEG≌△AEF;

(2)若直線EFABAD的延長線分別交于點M,N(如圖②),求證:EF2=ME2+NF2

(3)將正方形改為長與寬不相等的矩形,若其余條件不變(如圖③),請你直接寫出線段EF,BE,DF之間的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖在直角△ABC中,∠BAC=90°,AB=8,AC=6,DE是AB邊的垂直平分線,垂足為D,交邊BC于點E,連接AE,則△ACE的周長為( 。
A.16
B.15
C.14
D.13

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,A(-,0),B(0,1)分別為x軸,y軸上的點,ABC為等邊三角形,點P(3,a)在第一象限內(nèi),且滿足2SABP=SABC,則a的值為(  )

A. B. C. D. 2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,小敏家廚房一墻角處有一自來水管,裝修時為了美觀,準備用木板從AB處將水管密封起來,互相垂直的兩墻面與水管分別相切于D,E兩點,經(jīng)測量AD=10cm,BE=15cm, 則該自來水管的半徑為( )cm.

A.5
B.10
C.6
D.8

查看答案和解析>>

同步練習(xí)冊答案