如圖所示,25個邊長為1的小正方形拼成一個大正方形,A、B、C、D都是小正方形的頂點,則四邊形ABCD的面積為________.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

在△ABC中,AB、BC、AC三邊的長分別為
10
、
5
、
13
,求這個三角形的面積.小華同學在解答這道題時,先畫一個正方形網(wǎng)格(每個小正方形的邊長為1),再在網(wǎng)格中畫出格點△ABC(即△ABC三個頂點都在小正方形的頂點處),如圖①所示.這樣不需要求△ABC的高,而借用網(wǎng)格就能計算出它的面積,這種方法叫做構圖法.
(1)△ABC的面積為:
(2)若△DEF三邊的長分別為
13
、2
5
29
,請在圖①的正方形網(wǎng)格中畫出相應的△DEF,并利用構圖法求出它的面積.
(3)利用第(2)小題解題方法完成下題:如圖②,一個六邊形綠化區(qū)ABCDEF被分割成7個部分,其中正方形ABQP,CDRQ,EFPR的面積分別為13,20,29,且△PQR、△BCQ、△DER、△APF的面積相等,求六邊形綠化區(qū)ABCDEF的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

問題背景:
在△ABC中,AB、BC、AC三邊的長分別為
5
10
、
13
,求這個三角形的面積.
小輝同學在解答這道題時,先建立一個正方形網(wǎng)格(每個小正方形的邊長為1),再在網(wǎng)格中畫出格點△ABC(即△ABC三個頂點都在小正方形的頂點處),如圖①所示.這樣不需求△ABC的高,而借用網(wǎng)格就能計算出它的面積.我們把上述求△ABC面積的方法叫做構圖法.
(1)若△ABC三邊的長分別為
5
a,2
2
a,
17
a
(a>0),請利用圖②的正方形網(wǎng)格(每個小正方形的邊長為a)畫出相應的△ABC,并求出它的面積.
思維拓展:
(2)若△ABC三邊的長分別為
m2+16n2
,
9m2+4n2
,2
m2+n2
(m>0,n>0,且m≠n),試運用構圖法求出這三角形的面積.
探索創(chuàng)新:
(3)已知a、b都是正數(shù),a+b=3,求當a、b為何值時
a2+4
+
b2+25
有最小值,并求這個最小值.
(4)已知a,b,c,d都是正數(shù),且a2+b2=c2,c
a2-d2
=a2,求證:ab=cd.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖所示,在由邊長為1的25個小正方形組成的正方形網(wǎng)格上有一個△ABC,試在這個網(wǎng)格上畫一個與△ABC相似,且面積最大的△A1B1C1(A1,B1,C1三點都在格點上),并求出這個三角形的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖所示,在由邊長為1的25個小正方形組成的正方形網(wǎng)格上有一個△ABC,試在這個網(wǎng)格上畫一個與△ABC相似,且面積最大的△A1B1C1(A1,B1,C1三點都在格點上),并求出這個三角形的面積.

查看答案和解析>>

同步練習冊答案