如圖,在?ABCD中,過點B作BE⊥CD,垂足為E,連接AE.F為AE上一點,且∠BFE=∠C.
(1)試說明:△ABF∽△EAD;
(2)若AB=8,BE=6,AD=7,求BF的長.
分析:(1)可通過證明∠BAF=∠AED,∠AFB=∠D,證得△ABF∽△EAD;
(2)根據(jù)(1)的相似三角形可得出關(guān)于AB,AE,AD,BF的比例關(guān)系,有了AD,AB的長,只需求出AE的長即可.可在直角三角形ABE中用勾股定理求出AE的長,這樣就能求出BF的長了.
解答:(1)證明:在平行四邊形ABCD中,
∵∠D+∠C=180°,AB∥CD,
∴∠BAF=∠AED.
∵∠AFB+∠BFE=180°,∠D+∠C=180°,∠BFE=∠C,
∴∠AFB=∠D,
∴△ABF∽△EAD;

(2)解:∵BE⊥CD,AB∥CD,
∴BE⊥AB.
∴∠ABE=90°.
∴AE=
AB2+BE2
=
82+62
=10.
∵由(1)知,△ABF∽△EAD,
BF
AD
=
AB
AE

BF
7
=
8
10

∴BF=5.6.
點評:本題主要考查了三角形的判定和性質(zhì),同時也用到了平行四邊形的性質(zhì)和等角的補(bǔ)角相等等知識點.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在?ABCD中,對角線AC、BD相交于點O,AB=
29
,AC=4,BD=10.
問:(1)AC與BD有什么位置關(guān)系?說明理由.
(2)四邊形ABCD是菱形嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

18、如圖,在?ABCD中,∠A的平分線交BC于點E,若AB=10cm,AD=14cm,則EC=
4
cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•長春一模)感知:如圖①,在菱形ABCD中,AB=BD,點E、F分別在邊AB、AD上.若AE=DF,易知△ADE≌△DBF.
探究:如圖②,在菱形ABCD中,AB=BD,點E、F分別在BA、AD的延長線上.若AE=DF,△ADE與△DBF是否全等?如果全等,請證明;如果不全等,請說明理由.
拓展:如圖③,在?ABCD中,AD=BD,點O是AD邊的垂直平分線與BD的交點,點E、F分別在OA、AD的延長線上.若AE=DF,∠ADB=50°,∠AFB=32°,求∠ADE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2011•犍為縣模擬)甲題:已知關(guān)于x的一元二次方程x2=2(1-m)x-m2的兩實數(shù)根為x1,x2
(1)求m的取值范圍;
(2)設(shè)y=x1+x2,當(dāng)y取得最小值時,求相應(yīng)m的值,并求出最小值.
乙題:如圖,在?ABCD中,BE⊥AD于點E,BF⊥CD于點F,AC與BE、BF分別交于點G,H.
(1)求證:△BAE∽△BCF.
(2)若BG=BH,求證:四邊形ABCD是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在?ABCD中,∠ADB=90°,CA=10,DB=6,OE⊥AC于點O,連接CE,則△CBE的周長是
2
13
+4
2
13
+4

查看答案和解析>>

同步練習(xí)冊答案