【題目】若(a﹣b﹣2)2+|a+b+3|=0,則a2﹣b2的值是( 。

A. ﹣1 B. 1 C. 6 D. ﹣6

【答案】D

【解析】

由非負數(shù)的性質(zhì)得出a-b=2,a+b=-3,求出a,b的值,再代入a2-b2進行計算即可.

(a-b-2)2+|a+b+3|=0,

a-b=2,a+b=-3,

a2-b2=(a+b)(a-b)=2×(-3)=-6;

故選D.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠BAC=90°,∠B=45°,BC=10,過點AAD∥BC,且點D在點A的右側(cè).點P從點A出發(fā)沿射線AD方向以每秒1個單位的速度運動,同時點Q從點C出發(fā)沿射線CB方向以每秒2個單位的速度運動,在線段QC上取點E,使得QE=2,連結(jié)PE,設(shè)點P的運動時間為t秒.

(1)若PE⊥BC,求BQ的長;

(2)請問是否存在t的值,使以A,B,E,P為頂點的四邊形為平行四邊形?若存在,求出t的值;若不存在,請說明理由

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(本題滿分10分)科幻小說《實驗室的故事》中,有這樣一個情節(jié),科學家把一種珍奇的植物分別放在不同溫度的環(huán)境中,經(jīng)過一天后,測試出這種植物高度的增長情況(如下表):

溫度/℃

……

4

2

0

2

4

4.5

……

植物每天高度增長量/mm

……

41

49

49

41

25

19.75

……

由這些數(shù)據(jù),科學家推測出植物每天高度增長量是溫度的函數(shù),且這種函數(shù)是反比例函數(shù)、一次函數(shù)和二次函數(shù)中的一種.

1)請你選擇一種適當?shù)暮瘮?shù),求出它的函數(shù)關(guān)系式,并簡要說明不選擇另外兩種函數(shù)的理由;

2)溫度為多少時,這種植物每天高度的增長量最大?

3)如果實驗室溫度保持不變,在10天內(nèi)要使該植物高度增長量的總和超過250mm,那么實驗室的溫度應該在哪個范圍內(nèi)選擇?請直接寫出結(jié)果.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列運算正確的是(  )

A. a4a2=a8 B. a5+a5=a10

C. (﹣3a32=6a6 D. (a32a=a7

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】等邊ABC中,AO是BC邊上的高,D為AO上一點,以CD為一邊在CD下方作等邊CDE,連接BE

1求證ACD≌△BCE

2過點C作CHBE,交BE的延長線于H,若BC=8,求CH的長

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知方程(a2x2+2ax120是關(guān)于x的一元一次方程,則a_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】用汽車運一批貨物,第一次運走總數(shù)的45%,第二次運走75噸,還剩下35噸,這批貨物共有多少噸?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形ABCD中,對角線ACBD相交于點O,AF平分∠BAC,交BD于點F.

(1)求證:

(2)點A1、點C1分別同時從A、C兩點出發(fā),以相同的速度運動相同的時間后同時停止,如圖,A1F1平分∠BA1C1,交BD于點F1,過點F1F1EA1C1,垂足為E,請猜想EF1,AB三者之間的數(shù)量關(guān)系,并證明你的猜想;

(3)在(2)的條件下,當A1E=6,C1E=4時,則BD的長為  

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:A1,2),Bx,y),ABx軸,且By軸距離為3,則點B的坐標是____

查看答案和解析>>

同步練習冊答案