精英家教網(wǎng)如圖,在平面直角坐標(biāo)系中,以點(diǎn)C(1,1)為圓心,2為半徑作圓,交x軸于A,B兩點(diǎn).
(1)求出A,B兩點(diǎn)的坐標(biāo);
(2)若有一條開口向下的拋物線經(jīng)過點(diǎn)A,B,且其頂點(diǎn)P在⊙C上,請(qǐng)求出此拋物線的解析式.
分析:(1)過C作AB的垂線,設(shè)垂足為H,在Rt△CAH中,已知圓的半徑和CH的長(zhǎng)(由C點(diǎn)坐標(biāo)獲得),利用勾股定理即可求得AH的長(zhǎng),進(jìn)而可得到點(diǎn)A的坐標(biāo),B點(diǎn)坐標(biāo)的求法相同.
(2)根據(jù)拋物線和圓的對(duì)稱性知:C、P都在弦AB的垂直平分線上,已知了C點(diǎn)坐標(biāo)和圓的半徑,即可得到點(diǎn)P的坐標(biāo),而P為拋物線頂點(diǎn),可將所求拋物線設(shè)為頂點(diǎn)坐標(biāo)式,然后將A點(diǎn)坐標(biāo)代入拋物線的解析式中,即可求得待定系數(shù)的值,從而求出該拋物線的解析式.
解答:精英家教網(wǎng)解:(1)過點(diǎn)C作CH⊥x軸,H為垂足;
又∵C(1,1),
∴CH=OH=1;(1分)
∴在Rt△CHB中,HB=
CB2-CH2
=
3
;(3分)
∵CH⊥AB,CA=CB,
∴AH=BH;
故A(1-
3
,0),B(1+
3
,0).(5分)

(2)由圓與拋物線的對(duì)稱性可知拋物線的頂點(diǎn)P的坐標(biāo)為(1,3);(6分)
∴設(shè)拋物線解析式為y=a(x-1)2+3,
由已知得拋物線經(jīng)過點(diǎn)B(1+
3
,0),(7分)
把點(diǎn)B(1+
3
,0)代入上式,
解得a=-1,(8分)
∴拋物線的解析式為:y=-x2+2x+2.(9分)
(利用拋物線經(jīng)過P(1,3),A(1-
3
,0),B(1+
3
,0)
點(diǎn)評(píng):此題考查了垂徑定理、勾股定理、拋物線和圓的對(duì)稱性、二次函數(shù)解析式的確定等知識(shí),雖然涉及知識(shí)點(diǎn)較多,但難度不大.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,點(diǎn)P為x軸上的一個(gè)動(dòng)點(diǎn),但是點(diǎn)P不與點(diǎn)0、點(diǎn)A重合.連接CP,D點(diǎn)是線段AB上一點(diǎn),連接PD.
(1)求點(diǎn)B的坐標(biāo);
(2)當(dāng)∠CPD=∠OAB,且
BD
AB
=
5
8
,求這時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•渝北區(qū)一模)如圖,在平面直角坐標(biāo)xoy中,以坐標(biāo)原點(diǎn)O為圓心,3為半徑畫圓,從此圓內(nèi)(包括邊界)的所有整數(shù)點(diǎn)(橫、縱坐標(biāo)均為整數(shù))中任意選取一個(gè)點(diǎn),其橫、縱坐標(biāo)之和為0的概率是
5
29
5
29

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)中,等腰梯形ABCD的下底在x軸上,且B點(diǎn)坐標(biāo)為(4,0),D點(diǎn)坐標(biāo)為(0,3),則AC長(zhǎng)為
5
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)xOy中,已知點(diǎn)A(-5,0),P是反比例函數(shù)y=
k
x
圖象上一點(diǎn),PA=OA,S△PAO=10,則反比例函數(shù)y=
k
x
的解析式為(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,動(dòng)點(diǎn)P從點(diǎn)O出發(fā),在梯形OABC的邊上運(yùn)動(dòng),路徑為O→A→B→C,到達(dá)點(diǎn)C時(shí)停止.作直線CP.
(1)求梯形OABC的面積;
(2)當(dāng)直線CP把梯形OABC的面積分成相等的兩部分時(shí),求直線CP的解析式;
(3)當(dāng)△OCP是等腰三角形時(shí),請(qǐng)寫出點(diǎn)P的坐標(biāo)(不要求過程,只需寫出結(jié)果).

查看答案和解析>>

同步練習(xí)冊(cè)答案