【題目】有一張矩形紙片ABCD,,.
如圖1,點E在這張矩形紙片的邊AD上,將紙片折疊,使AB落在CE所在直線上,折痕設為點M,N分別在邊AD,BC上,利用直尺和圓規(guī)畫出折痕不寫作法,保留作圖痕跡;
如圖2,點K在這張矩形紙片的邊AD上,,將紙片折疊,使AB落在CK所在直線上,折痕為HI,點A,B分別落在點,處,小明認為所在直線恰好經(jīng)過點D,他的判斷是否正確,請說明理由.
【答案】(1)見解析;(2)小明的判斷不正確,理由見解析.
【解析】
(1)延長BA交CE的延長線由G,作∠BGC的角平分線交AD于M,交BC于N,直線MN即為所求;
(2)由△CDK∽△IB′C,推出,設CB′=3k,IB′=4k,IC=5k,由折疊可知,IB=IB′=4k,可知BC=BI+IC=4k+5k=9,推出k=1,推出IC=5,IB′=4,B′C=3,在Rt△ICB′中,tan∠B′IC=,連接ID,在Rt△ICD中,tan∠DIC=,由此即可判斷tan∠B′IC≠tan∠DIC,推出B′I所在的直線不經(jīng)過點D.
(1)如圖1所示直線MN即為所求;
(2)小明的判斷不正確,理由如下:
如圖2,連接ID,
在Rt△CDK中,∵DK=3,CD=4,
∴CK==5,
∵AD∥BC,
∴∠DKC=∠ICK,
由折疊可知,∠A′B′I=∠B=90°,
∴∠IB′C=90°=∠D,
∴△CDK∽△IB′C,
∴,
即,
設CB′=3k,IB′=4k,IC=5k,
由折疊可知,IB=IB′=4k,
∴BC=BI+IC=4k+5k=9,
∴k=1,
∴IC=5,IB′=4,B′C=3,
在Rt△ICB′中,tan∠B′IC=,
連接ID,在Rt△ICD中,tan∠DIC=,
∴tan∠B′IC≠tan∠DIC,
∴B′I所在的直線不經(jīng)過點D.
科目:初中數(shù)學 來源: 題型:
【題目】某品牌筆記本電腦的售價是5000元/臺。最近,該商家對此型號筆記本電腦舉行促銷活動,有兩種優(yōu)惠方案。方案一:每臺按售價的九折銷售,方案二:若購買不超過5臺,每臺按售價銷售;若超過5臺,超過的部分每臺按售價的八折銷售。設公司一次性購買此型號筆記本電腦x合、
(I)根據(jù)題意,填寫下表:
(II)設選擇方案一的費用為y1元,選擇方案二的費用為為y2元,分別寫出y1,y2關于x的函數(shù)關系式;
(III)當x>15時,該公司采用哪種方案購買更合算?并說明理由
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,ABCO的頂點B、C在第二象限,點A(﹣3,0),反比例函數(shù)y=(k<0)圖象經(jīng)過點C和AB邊的中點D,若∠B=α,則k的值為( )
A. ﹣4tanαB. ﹣2sinαC. ﹣4cosαD. ﹣2tan
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC和△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,C,D,E三點在同一條直線上,連接BD,則下列結(jié)論錯誤的是( 。
A. △ABD≌△ACE B. ∠ACE+∠DBC=45°
C. BD⊥CE D. ∠BAE+∠CAD=200°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平行四邊形ABCD中,∠C和∠D的平分線交于M,DM的延長線交AD于E,試猜想:
(1)CM與DE的位置關系?
(2)M在DE的什么位置上?并證明你的猜想.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某公司銷售部有營業(yè)員16人,銷售部為了制定某種商品的月銷售定額,統(tǒng)計了這16人某月的銷售量如下:
每人銷售件數(shù) | 10 | 11 | 12 | 13 | 14 | 15 |
人數(shù) | 1 | 3 | 4 | 3 | 3 | 2 |
(1)這16位銷售員該月銷售量的眾數(shù)是_____,中位數(shù)是_____,平均數(shù)是_____.
(2)若要使75%的營業(yè)員都能完成任務,應選什么統(tǒng)計量(平均數(shù)、中位數(shù)和眾數(shù))作為月銷售件數(shù)的定額?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y1=a(x+2)2﹣3與y2=(x﹣3)2+1交于點A(1,3),過點A作x軸的平行線,分別交兩條拋物線于點B,C.則以下結(jié)淪:①無論x取何值,y2的值總是正數(shù);②2a=1;③當x=0時,y2﹣y1=4;④2AB=3AC;其中正確結(jié)論是( )
A. ①②B. ②③C. ③④D. ①④
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com