【題目】如圖, 在平面直角坐標(biāo)系中, △ABC的頂點(diǎn)坐標(biāo)分別為A(2,0),B(3,2),C(5,-2). 以原點(diǎn)O為位似中心,在y軸的右側(cè)將△ABC放大為原來的兩倍得到△.
(1)畫出△;
(2)分別寫出B, C兩點(diǎn)的對(duì)應(yīng)點(diǎn), 的坐標(biāo).
【答案】(1)作圖見解析;(2)B'(6,4),C'(10,﹣4).
【解析】
(1)由以原點(diǎn)O為位似中心,在y軸的右側(cè)將△ABC放大為原來的兩倍得到△A'B'C',根據(jù)位似的性質(zhì),可求得點(diǎn)A'、B'、C'的坐標(biāo),繼而畫出△A'B'C';
(2)由(1)即可求得B,C兩點(diǎn)的對(duì)應(yīng)點(diǎn)B',C'的坐標(biāo).
(1)∵以原點(diǎn)O為位似中心,在y軸的右側(cè)將△ABC放大為原來的兩倍得到△A'B'C',
∴A'(4,0),B'(6,4),C'(10,﹣4);
如圖畫出△A'B'C':
(2)由(1)得:B'(6,4),C'(10,﹣4).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在菱形ABCD中,對(duì)角線AC、BD相交于點(diǎn)O,DE∥AC,AE∥BD.
(1)求證:四邊形AODE是矩形;
(2)若AB=2,∠BCD=120°,求四邊形AODE的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把一根長為米的鐵絲折成一個(gè)矩形,矩形的一邊長為米,面積為S米,
(1)求S關(guān)于的函數(shù)表達(dá)式和的取值范圍
(2)為何值時(shí),S最大?最大為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC+∠EAD=180°,△ABC不動(dòng),△ADE繞點(diǎn)A旋轉(zhuǎn),連接BE,CD,F(xiàn)為BE的中點(diǎn),連接AF.
(1)如圖①,當(dāng)∠BAE=90°時(shí),求證:CD=2AF;
(2)當(dāng)∠BAE≠90°時(shí),(1)的結(jié)論是否成立?請(qǐng)結(jié)合圖②說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】圖1和圖2中的正方形ABCD和四邊形AEFG都是正方形.
(1)如圖1,連接DE,BG,M為線段BG的中點(diǎn),連接AM,探究AM與DE的數(shù)量關(guān)系和位置關(guān)系,并證明你的結(jié)論;
(2)在圖1的基礎(chǔ)上,將正方形AEFG繞點(diǎn)A逆時(shí)針方向旋轉(zhuǎn)到圖2的位置,連結(jié)DE、BG,M為線段BG的中點(diǎn),連結(jié)AM,探究AM與DE的數(shù)量關(guān)系和位置關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,點(diǎn),將點(diǎn)A向右平移6個(gè)單位長度,得到點(diǎn)B.
(1)直接寫出點(diǎn)B的坐標(biāo);
(2)若拋物線y=-x2+bx+c經(jīng)過點(diǎn)A,B,求拋物線的表達(dá)式;
(3)若拋物線y=-x2+bx+c的頂點(diǎn)在直線y=x+2上移動(dòng),當(dāng)拋物線與線段AB有且只有一個(gè)公共點(diǎn)時(shí),求拋物線頂點(diǎn)橫坐標(biāo)的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】裝潢公司要給邊長為6米的正方形墻面ABCD進(jìn)行裝潢,設(shè)計(jì)圖案如圖所示(四周是四個(gè)全等的矩形,用材料甲進(jìn)行裝潢;中心區(qū)是正方形MNPQ,用材料乙進(jìn)行裝潢).
兩種裝潢材料的成本如下表:
材料 | 甲 | 乙 |
價(jià)格(元/米2) | 50 | 40 |
設(shè)矩形的較短邊AH的長為x米,裝潢材料的總費(fèi)用為y元.
(1)MQ的長為 米(用含x的代數(shù)式表示);
(2)求y關(guān)于x的函數(shù)解析式;
(3)當(dāng)中心區(qū)的邊長不小于2米時(shí),預(yù)備資金1760元購買材料一定夠用嗎?請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,A(4,0),B(0,3),C(4,3),I是△ABC的內(nèi)心,將△ABC繞原點(diǎn)逆時(shí)針旋轉(zhuǎn)90°后,I的對(duì)應(yīng)點(diǎn)I'的坐標(biāo)為( 。
A. (﹣2,3) B. (﹣3,2) C. (3,﹣2) D. (2,﹣3)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線與x軸、y軸分別交于點(diǎn)A,B,與雙曲線分別交于點(diǎn)C,D,且點(diǎn)C的坐標(biāo)為.
(1)分別求出直線、雙曲線的函數(shù)表達(dá)式.
(2)求出點(diǎn)D的坐標(biāo).
(3)利用圖象直接寫出:當(dāng)x在什么范圍內(nèi)取值時(shí)?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com