【題目】如圖,已知OE平分,OF平分
若是直角,,求的度數(shù).
若,,,請(qǐng)用x的代數(shù)式來(lái)表示直接寫出結(jié)果就行.
【答案】(1)45°(2)
【解析】
(1)由∠AOB是直角、∠BOC=60°知∠AOC=∠AOB+∠BOC=150°,根據(jù)OE平分∠AOC、OF平分∠BOC求得∠EOC、∠COF度數(shù),由∠EOF=∠EOC∠COF可得答案;
(2)由∠AOC=x°,、OE平分∠AOC 知∠EOC=∠AOC=x°,由OF平分∠BOC、∠BOC=60°知∠COF=∠BOC=30°,根據(jù)∠EOF=∠EOC∠COF可得答案.
解:(1)∵∠AOB是直角,∠BOC=60°,
∴∠AOC=∠AOB+∠BOC=90°+60°=150°,
∵OE平分∠AOC,
∴∠EOC=∠AOC=75°,
∵OF平分∠BOC,
∴∠COF=∠BOC=30°,
∴∠EOF=∠EOC∠COF=75°30°=45°;
(2)∵∠AOC=x°,OE平分∠AOC,
∴∠EOC=∠AOC=x°,
∵OF平分∠BOC,∠BOC=60°,
∴∠COF=∠BOC=30°,
∴∠EOF=∠EOC∠COF=x°30°,即y=x30.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,已知點(diǎn) A(a+b,2-a)與點(diǎn)B(a-5,b-2a)關(guān)于y軸對(duì)稱.
(1)求A、B兩點(diǎn)的坐標(biāo);
(2)如果點(diǎn)B關(guān)于x軸的對(duì)稱點(diǎn)是C,在圖中標(biāo)出點(diǎn)A、B、C,并求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知△ABC中∠BAC=135°,點(diǎn)E,點(diǎn)F在BC上,EM垂直平分AB交AB于點(diǎn)M,FN垂直平分AC交AC于點(diǎn)N,BE=12,CF=9.
(1)判斷△EAF的形狀,并說明理由;
(2)求△EAF的周長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“小組合作制”正在七年級(jí)如火如茶地開展,旨在培養(yǎng)七年級(jí)學(xué)生的合作學(xué)習(xí)的精神和能力,學(xué)會(huì)在合作中自主探索.?dāng)?shù)學(xué)課上,吳老師在講授“角平分線”時(shí),設(shè)計(jì)了如下四種教學(xué)方法:①教師講授,學(xué)生練習(xí);②學(xué)生合作交流,探索規(guī)律;③教師引導(dǎo)學(xué)生總結(jié)規(guī)律,學(xué)生練習(xí);④教師引導(dǎo)學(xué)生總結(jié)規(guī)律,學(xué)生合作交流,吳老師將上述教學(xué)方法作為調(diào)研內(nèi)容發(fā)到七年級(jí)所有同學(xué)手中要求每位同學(xué)選出自己最喜歡的一種,然后吳老師從所有調(diào)查問卷中隨機(jī)抽取了若干份調(diào)查問卷作為樣本,統(tǒng)計(jì)如下:
序號(hào)①②③④代表上述四種教學(xué)方法,圖二中,表示①部分的扇形的中心角度數(shù)為36°,請(qǐng)回答問題:
(1)在后來(lái)的抽樣調(diào)查中,吳老師共抽取 位學(xué)生進(jìn)行調(diào)查;并將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(2)圖二中,表示③部分的扇形的中心角為多少度?
(3)若七年級(jí)學(xué)生中選擇④種教學(xué)方法的有540人,請(qǐng)估計(jì)七年級(jí)總?cè)藬?shù)約為多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】《算法統(tǒng)宗》是中國(guó)古代數(shù)學(xué)名著,作者是我國(guó)明代數(shù)學(xué)家程大位.在《算法統(tǒng)宗》中記載:“以繩測(cè)井,若將繩三折測(cè)之,繩多4尺,若將繩四折測(cè)之,繩多1尺,繩長(zhǎng)井深各幾何?”
譯文:“用繩子測(cè)水井深度,如果將繩子折成三等份,井外余繩4尺;如果將繩子折成四等份,井外余繩1尺.問繩長(zhǎng)、井深各是多少尺?”
設(shè)井深為x尺,根據(jù)題意列方程,正確的是( 。
A. 3(x+4)=4(x+1) B. 3x+4=4x+1
C. 3(x﹣4)=4(x﹣1) D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在同一平面直角坐標(biāo)系中,反比例函數(shù)y= 與一次函數(shù)y=kx﹣1(k為常數(shù),且k>0)的圖象可能是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知∠AOB=60°,∠AOB的邊OA上有一動(dòng)點(diǎn)P,從距離O點(diǎn)18cm的點(diǎn)M處出發(fā),沿線段MO、射線OB運(yùn)動(dòng),速度為2cm/s;動(dòng)點(diǎn)Q從點(diǎn)O出發(fā),沿射線OB運(yùn)動(dòng),速度為lcm/s;P、Q同時(shí)出發(fā),同時(shí)射線OC繞著點(diǎn)O從OA上以每秒5°的速度順時(shí)針旋轉(zhuǎn),設(shè)運(yùn)動(dòng)時(shí)間是t(s).
(1)當(dāng)點(diǎn)P在MO上運(yùn)動(dòng)時(shí),PO=______cm(用含t的代數(shù)式表示);
(2)當(dāng)點(diǎn)P在線段MO上運(yùn)動(dòng)時(shí),t為何值時(shí),OP=OQ?此時(shí)射線OC是∠AOB的角平分線嗎?如果是請(qǐng)說明理由.
(3)在射線OB上是否存在P、Q相距2cm?若存在,請(qǐng)求出t的值并求出此時(shí)∠BOC的度數(shù);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】乘法公式的探究及應(yīng)用.
數(shù)學(xué)活動(dòng)課上,老師準(zhǔn)備了若干個(gè)如圖1的三種紙片,A種紙片邊長(zhǎng)為a的正方形,B種紙片是邊長(zhǎng)為b的正方形,C種紙片長(zhǎng)為a、寬為b的長(zhǎng)方形,并用A種紙片一張,B種紙片一張,C種紙片兩張拼成如圖2的大正方形.
(1)請(qǐng)用兩種不同的方法求圖2大正方形的面積.方法1:______;方法2:_______.
(2)觀察圖2,請(qǐng)你寫出下列三個(gè)代數(shù)式:(a+b)2,a2+b2,ab之間的等量關(guān)系._______;
(3)類似的,請(qǐng)你用圖1中的三種紙片拼一個(gè)使長(zhǎng)方形面積為:3a2+7ab+2b2,并對(duì)3a2+7ab+2b2因式分解為_______.
(4)根據(jù)(2)題中的等量關(guān)系,解決如下問題:
①已知:a+b=5,a2+b2=11,求ab的值;
②已知(x﹣2016)2+(x﹣2018)2=34,求(x﹣2017)2的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司為獎(jiǎng)勵(lì)在趣味運(yùn)動(dòng)會(huì)上取得好成績(jī)的員工,計(jì)劃購(gòu)買甲、乙兩種獎(jiǎng)品共20件.其中甲種獎(jiǎng)品每件40元,乙種獎(jiǎng)品每件30元
(1)如果購(gòu)買甲、乙兩種獎(jiǎng)品共花費(fèi)了650元,求甲、乙兩種獎(jiǎng)品各購(gòu)買了多少件?
(2)如果購(gòu)買乙種獎(jiǎng)品的件數(shù)不超過甲種獎(jiǎng)品件數(shù)的2倍,總花費(fèi)不超過680元,求該公司有哪幾種不同的購(gòu)買方案?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com