精英家教網 > 初中數學 > 題目詳情

【題目】某網店嘗試用單價隨天數而變化的銷售模式銷售一種商品,利用30天的時間銷售一種成本為10元/件的商品售后,經過統(tǒng)計得到此商品單價在第x天(x為正整數)銷售的相關信息,如表所示:

銷售量n(件)

n=50﹣x

銷售單價m(元/件)

當1≤x≤20時,

當21≤x≤30時,


(1)請計算第15天該商品單價為多少元/件?
(2)求網店銷售該商品30天里所獲利潤y(元)關于x(天)的函數關系式;
(3)這30天中第幾天獲得的利潤最大?最大利潤是多少?

【答案】
(1)

解:當x=15,m=20+×15=27.5(元/件).


(2)

解:y==


(3)

解:當1≤x≤20時,y=,

則當x=15時,y有最大值,為612.5;

當21≤x≤30時,由y=,可知y隨x的增大而減小

∴當x=21時,y最大值==580元

580<612.5,

∴第15天時獲得利潤最大,最大利潤為612.5元.

【解析】(1)當x=15時,在1≤x≤20內,所以代入m=20+x可求得;
(2)分當1≤x≤20時與當21≤x≤30時討論,用單件利潤與銷售數量的乘積表示總利潤;
(3)求出當1≤x≤20時的最大值,求出當21≤x≤30時的最大值,再作比較.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】“低碳環(huán)保,綠色出行”的理念得到廣大群眾的接受,越來越多的人再次選擇自行車作為出行工具,小軍和爸爸同時從家騎自行車去圖書館,爸爸先以150米/分的速度騎行一段時間,休息了5分鐘,再以m米/分的速度到達圖書館,小軍始終以同一速度騎行,兩人行駛的路程y(米)與時間x(分鐘)的關系如圖,請結合圖象,解答下列問題:
(1)a= , b= , m= ;
(2)若小軍的速度是120米/分,求小軍在途中與爸爸第二次相遇時,距圖書館的距離;
(3)在(2)的條件下,爸爸自第二次出發(fā)至到達圖書館前,何時與小軍相距100米?
(4)若小軍的行駛速度是v米/分,且在途中與爸爸恰好相遇兩次(不包括家、圖書館兩地),請直接寫出v的取值范圍.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,拋物線y=ax2+bx﹣a﹣b(a<0,a、b為常數)與x軸交于A、C兩點,與y軸交于B點,直線AB的函數關系式為y= x+

(1)求該拋物線的函數關系式與C點坐標;
(2)已知點M(m,0)是線段OA上的一個動點,過點M作x軸的垂線l分別與直線AB和拋物線交于D、E兩點,當m為何值時,△BDE恰好是以DE為底邊的等腰三角形?
(3)在(2)問條件下,當△BDE恰好是以DE為底邊的等腰三角形時,動點M相應位置記為點M′,將OM′繞原點O順時針旋轉得到ON(旋轉角在0°到90°之間);
i:探究:線段OB上是否存在定點P(P不與O、B重合),無論ON如何旋轉, 始終保持不變,若存在,試求出P點坐標;若不存在,請說明理由;
ii:試求出此旋轉過程中,(NA+ NB)的最小值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,一扇窗戶垂直打開,即OMOPAC是長度不變的滑動支架,其中一端固定在窗戶的點A處,另一端C在OP上滑動,將窗戶OM按圖示方向向內旋轉37°到達ON位置,此時,點AC的對應位置分別是點B、D.測量出∠ODB為28°,點D到點O的距離為30cm

(1)求B點到OP的距離;
(2)求滑動支架的長.(結果精確到0.1)(數據:sin28°≈0.47,cos28°≈0.88,tan28°≈0.53,sin 53°≈0.8,cos53°≈0.6,tan53°≈1.33)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在邊長為2的菱形ABCD中, ∠ABC=120°, E,F分別為AD,CD上的動點,且AE+CF=2,則線段EF長的最小值是

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】將函數y=f(x)的圖象向左平移φ(0<φ<π)個單位后得到函數g(x)=sin2x的圖象,當x1 , x2滿足時,|f(x1)﹣g(x2)|=2, ,則φ的值為(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知函數f(x)=ex﹣asinx﹣1,a∈R.
(1)若a=1,求f(x)在x=0處的切線方程;
(2)若f(x)≥0在區(qū)間[0,1)恒成立,求a的取值范圍.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在△ABC中,角A,B,C所對應的邊分別為a,b,c,a﹣b=bcosC.
(1)求證:sinC=tanB;
(2)若a=1,C為銳角,求c的取值范圍.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】若對任意的實數a,函數f(x)=(x﹣1)lnx﹣ax+a+b有兩個不同的零點,則實數b的取值范圍是(
A.(﹣∞,﹣1]
B.(﹣∞,0)
C.(0,1)
D.(0,+∞)

查看答案和解析>>

同步練習冊答案