【題目】如圖,小靚用七巧板拼成一幅裝飾圖,放入長方形ABCD內(nèi),裝飾圖中的三角形頂點E,F分別在邊AB,BC上,三角形①的邊GD在邊AD上,若圖1正方形中MN=1,則CD=____.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明從右邊的二次函數(shù)y=ax2+bx+c圖象中,觀察得出了下面的五條信息:①a<0,②c=0,③函數(shù)的最小值為-3,④當(dāng)x<0時,y>0,⑤當(dāng)0<x1<x2<2時,y1>y2 , (6)對稱軸是直線x=2.你認為其中正確的個數(shù)為( )
A. 2 B. 3 C. 4 D. 5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校組織340名師生進行長途考察活動,帶有行李170件,計劃租用甲、乙兩種型號的汽車共10輛.經(jīng)了解,甲車每輛最多能載40人和16件行李,乙車每輛最多能載30人和20件行李.
(1)請你幫助學(xué)校設(shè)計所有可行的租車方案.
(2)如果甲車的租金為每輛2 000元,乙車的租金為每輛1 800元,問哪種可行方案使租車費用最?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】《九章算術(shù)》記載“今有邑方不知大小,各中開門.出北門三十步有木,出西門七百五十步見木.問邑方有幾何?”意思是:如圖,點M、點N分別是正方形ABCD的邊AD、AB的中點,ME⊥AD,NF⊥AB,EF過點A,且ME=30步,NF=750步,則正方形的邊長為( 。
A. 150步B. 200步C. 250步D. 300步
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,我們把對角線互相垂直的四邊形叫做垂美四邊形.
(l)概念理解:如圖2,在四邊形ABCD中,AB=AD,CB=CD,問四邊形ABCD是垂美四邊形嗎?請說明理由.
(2)性質(zhì)探宄:試探索垂美四邊形ABCD兩組對邊AB,CD與BC,AD之間的數(shù)量關(guān)系.
猜想結(jié)論:(要求用文字語言敘述)
寫出證明過程(先畫出圖形,寫出已知、求證)
(3)問題解決:如圖3,分別以Rt△ACB的直角邊AC和斜邊AB為邊向外作正方形ACFG和正方形ABDE,連接CE,BG,GE,已知AC=4,AB=5,求GE長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】科技改變世界.2017年底,快遞分揀機器人從微博火到了朋友圈.據(jù)介紹,這些機器人不僅可以自動規(guī)劃最優(yōu)路線,將包裹準(zhǔn)確地放入相應(yīng)的路口,還會感應(yīng)避讓障礙物,自動歸隊取包裹,沒電的時候還會自己找充電樁充電.某快遞公司啟用40臺A種機器人、150臺B種機器人分揀快遞包裹,A、B兩種機器人全部投入工作,1小時共可以分揀0.77萬件包裹;若全部A種機器人工作1.5小時,全部B種機器人工作2小時,一共可以分揀1.38萬件包裹.
(1)求兩種機器人每臺每小時各分揀多少件包裹?
(2)為進一步提高效率,快遞公司計劃再購進A、B兩種機器人共100臺.若要保證新購進的這批機器人每小時的總分揀量不少于5500件,求至少應(yīng)購進A種機器人多少臺?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】按要求完成下列證明:
已知:如圖,AB∥CD,直線AE交CD于點C,∠BAC+∠CDF=180°.
求證:AE∥DF.
證明: ∵AB∥CD(____________________________) ,
∴∠BAC=∠DCE(__________________________________________________________________________).
∵∠BAC+∠CDF=180°(已知),
∴____________ +∠CDF=180°(____________________________________).
∴AE∥DF(______________________________________________________________________).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知如圖1,線段AB、CD相交于點O,連接AD、CB,我們把形如圖1的圖形稱之為“8字形”.如圖2,在圖1的條件下,∠DAB和∠BCD的平分線AP和CP相交于點P,并且與CD、AB分別相交于M、N.試解答下列問題:
(1)在圖1中,請直接寫出∠A、∠B、∠C、∠D之間的數(shù)量關(guān)系:_________;
(2)仔細觀察,在圖2中“8字形”的個數(shù)_________個;
(3)在圖2中,若∠D=40°,∠B=36°,試求∠P的度數(shù);
(4)如果圖2中∠D和∠B為任意角,其他條件不變,試問∠P與∠D,∠B之間存在著怎樣的數(shù)量關(guān)系(直接寫出結(jié)論即可)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com