【題目】如圖,是等邊三角形,點分別在邊、上,,與相交于點,,垂足為.
(1)求證:;
(2)若,求的長.
【答案】(1)證明見詳解;(2) 7.
【解析】
(1)由是等邊三角形,得AB=CA,∠BAE=∠ACD,進而根據(jù)SAS證明;
(2)由,得∠ABE=∠CAD,AD=BE,從而得∠BFG=∠ABE+∠BAD=60°,∠FBG=30°,進而求出BF的值,BE的值,即可求解.
(1)∵是等邊三角形,
∴AB=CA,∠BAE=∠ACD,
在和中,
∵
∴(SAS);
(2)∵
∴∠ABE=∠CAD,AD=BE,
∴∠ABE+∠BAD=∠CAD+∠BAD=∠BAC=60°,
∴∠BFG=∠ABE+∠BAD=60°,
∵,
∴∠FBG=30°,
∴BF=2FG=2×3=6,
∴BE=BF+EF=6+1=7,
∴AD=BE=7.
科目:初中數(shù)學 來源: 題型:
【題目】如圖線段AB的端點在邊長為1的正方形網(wǎng)格的格點上,現(xiàn)將線段AB繞點A按逆時針方向旋轉(zhuǎn)90°得到線段AC.
(1)請你用尺規(guī)在所給的網(wǎng)格中畫出線段AC及點B經(jīng)過的路徑;
(2)若將此網(wǎng)格放在一平面直角坐標系中,已知點A的坐標為(1,3),點B的坐標為(-2,-1),則點C的坐標為 ;
(3)線段AB在旋轉(zhuǎn)到線段AC的過程中,線段AB掃過的區(qū)域的面積為 ;
(4)若有一張與(3)中所說的區(qū)域形狀相同的紙片,將它圍成一個幾何體的側(cè)面,則該幾何體底面圓的半徑長為
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,∠CAB=30°,AB=10,點D在線段AB上,AD=2.點P,Q以相同的速度從D點同時出發(fā),點P沿DB方向運動,點Q沿DA方向到點A后立刻以原速返回向點B運動.以PQ為直徑構(gòu)造⊙O,過點P作⊙O的切線交折線AC﹣CB于點E,將線段EP繞點E順時針旋轉(zhuǎn)60°得到EF,過F作FG⊥EP于G,當P運動到點B時,Q也停止運動,設(shè)DP=m.
(1)當2<m≤8時,AP=,AQ=.(用m的代數(shù)式表示)
(2)當線段FG長度達到最大時,求m的值;
(3)在點P,Q整個運動過程中,
①當m為何值時,⊙O與△ABC的一邊相切?
②直接寫出點F所經(jīng)過的路徑長是.(結(jié)果保留根號)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩車分別從A、B兩地同時出發(fā),在同一條公路上,勻速行駛,相向而行,到兩車相遇時停止.甲車行駛一段時間后,因故停車0.5小時,故障解除后,繼續(xù)以原速向B地行駛,兩車之間的路程y(千米)與出發(fā)后所用時間x(小時)之間的函數(shù)關(guān)系如圖所示.
(1)求甲、乙兩車行駛的速度V甲、V乙.
(2)求m的值.
(3)若甲車沒有故障停車,求可以提前多長時間兩車相遇.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形ABCD的長AB=30,寬BC=20.
(1)如圖(1)若沿矩形ABCD四周有寬為1的環(huán)形區(qū)域,圖中所形成的兩個矩形ABCD與A′B′C′D′相似嗎?請說明理由;
(2)如圖(2),x為多少時,圖中的兩個矩形ABCD與A′B′C′D′相似?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】家用電滅蚊器的發(fā)熱部分使用了PTC發(fā)熱材料,它的電阻R(kΩ)隨溫度t(℃)(在一定范圍內(nèi))變化的大致圖象如圖所示.通電后,發(fā)熱材料的溫度在由室溫10℃上升到30℃的過程中,電阻與溫度成反比例關(guān)系,且在溫度達到30℃時,電阻下降到最小值;隨后電阻隨溫度升高而增加,溫度每上升1℃,電阻增加kΩ.
(1)求當10≤t≤30時,R和t之間的關(guān)系式;
(2)求溫度在30℃時電阻R的值;并求出t≥30時,R和t之間的關(guān)系式;
(3)家用電滅蚊器在使用過程中,溫度在什么范圍內(nèi)時,發(fā)熱材料的電阻不超過6 kΩ?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,某水平地面上建筑物的高度為AB,在點D和點F處分別豎立高是2米的標桿CD和EF,兩標桿相隔52米,并且建筑物AB,標桿CD和EF在同一豎直平面內(nèi),從標桿CD后退2米到點G處,在G處測得建筑物頂端A和標桿頂端C在同一條直線上;從標桿FE后退4米到點H處,在H處測得建筑物頂端A和標桿頂端E在同一條直線上,求建筑物的高.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知關(guān)于x的一元二次方程.
(1)若該方程有實數(shù)根,求a的取值范圍;
(2)若該方程一個根為-1,求方程的另一個根.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com