科目:初中數學 來源:數學教研室 題型:013
(1)如果再加上條件“AD∥BC”,那么四邊形ABCD一定是平行四邊形;
(2)如果再加上條件“AB=CD”,那么四邊形ABCD一定是平行四邊形;
(3)如果再加上條件“∠DAB=∠DCB”那么四邊形ABCD一定是平行四邊形;
(4)如果再加上“BC=AD”,那么四邊形ABCD一定是平行四邊形;
(5)如果再加上條件“AO=CO”,那么四邊形ABCD一定是平行四邊形;
(6)如果再加上條件“∠DBA=∠CAB”,那么四邊形ABCD一定是平行四邊形.
A.3個 B.4個 C.5個 D.6個
查看答案和解析>>
科目:初中數學 來源:三點一測叢書 九年級數學 上。ńK版課標本) 江蘇版課標本 題型:044
實踐與探索課上,老師布置了這樣一道題:
有100米長的籬笆材料,想圍成一矩形露天倉庫,要求面積不小于600平方米,在場地的北面有一堵長50米的舊墻.有人用這個籬笆圍一個長40米,寬10米的矩形倉庫,但面積只有400平方米,不合要求.現(xiàn)在請你設計矩形倉庫的長和寬,使它符合要求.
經過同學們一天的實踐與思考,老師收到了如下幾種設計方案:
(1)如果設矩形的寬為x米,則用于長的籬笆為=(50-x)米,這時面積S=x(50-x).
當S=600時,由x(50-x)=600,得x2-50x+600=0,解得x1=20,x2=30.
檢驗后知x=20符合要求.
(2)根據在周長相等的條件下,正方形面積大于矩形面積,所以設計成正方形倉庫,它的邊長為x米,則4x=100,x=25.這時面積達到625米,當然符合要求.
(3)如果利用場地北面的那堵舊墻,取矩形的長與舊墻平行,設與墻垂直的矩形一邊長為x米,則另一邊為100-2x,如圖.
因為舊墻長50米,所以100-2x≤50.即x≥25米.若S=600平方米,則由x(100-2x)=600,即x2-50x+300=0,解得x1=25+,x2=25-.根據x≥25,舍去x2=25-.
所以,利用舊墻,取矩形垂直于舊墻一邊長為25+米(約43米),另一邊長約14米,符合要求.
(4)如果充分利用北面舊墻,即矩形一邊是50米舊墻時,用100米籬笆圍成矩形倉庫,則矩形另一邊長為25米,這時矩形面積為S=50×25=1250(平方米).即面積可達1250平方米,符合設計要求.
還可以有其他一些符合要求的設計方案.請你試試看.
查看答案和解析>>
科目:初中數學 來源: 題型:044
閱讀下列證明過程:已知,如圖四邊形ABCD中,AB=DC,AC=BD,AD≠BC,求證:四邊形ABCD是等腰梯形.
讀后完成下列各小題.
(1)
證明過程是否有錯誤?如有,錯在第幾步上,答: .(2)
作DE∥AB的目的是: .(3)
有人認為第9步是多余的,你的看法呢?為什么?答: .(4)
判斷四邊形ABED為平行四邊形的依據是: .(5)
判斷四邊形ABCD是等腰梯形的依據是 .(6)
若題設中沒有AD≠BC,那么四邊形ABCD一定是等腰梯形嗎?為什么?答: .
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com