如圖,⊙O中,AB、AC是弦,O在∠BAC的內(nèi)部,∠ABO=α,∠ACO=β,∠BOC=θ,則下列關系式中,正確的是( )

A.θ=α+β
B.θ=2α+2β
C.θ+α+β=180°
D.θ+α+β=360°
【答案】分析:過A、O作⊙O的直徑AD,分別在等腰△OAB、等腰△OAC中,根據(jù)三角形外角的性質求出θ=2α+2β.
解答:解:過A作⊙O的直徑,交⊙O于D;
△OAB中,OA=OB,則∠BOD=∠OBA+∠OAB=2α;
同理可得:∠COD=∠OCA+∠OAC=2β;
∵∠BOC=∠BOD+∠COD,
∴θ=2α+2β;
故選B.
點評:此題主要考查的是等腰三角形的性質及三角形的外角性質.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

9、如圖,△ABC中,AB=AC,AD⊥BC,D為垂足,點E、F分別是AC,AB上的點,要使DF=DE,則需要補充的條件是
DF⊥AB,DE⊥AC或BF=CE或AF=AE

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,△ABC中,AB>AC,AD是BC邊上的高,F(xiàn)是BC的中點,EF⊥BC交AB于E,若BD:DC=3:2,則BE:AB=
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•順義區(qū)二模)如圖,△ABC中,AB=AC=2,若P為BC的中點,則AP2+BP•PC的值為
4
4
;若BC邊上有100個不同的點P1,P2,…,P100,記mi=APi2+BPi•PiC(i=1,2,…,100),則m1+m2+…+m100的值為
400
400

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,△ABC中,AB=BC,∠ABC=90°,△ABC繞B點順時針旋轉至△A1BC1位置,設旋轉角為α,0°<α<90°
(1)求證:EA1=FC;
(2)當α=
45°
45°
時,四邊形BC1DA是菱形?證明你的結論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•莆田)如圖,?ABCD中,AB=2,以點A為圓心,AB為半徑的圓交邊BC于點E,連接DE、AC、AE.
(1)求證:△AED≌△DCA;
(2)若DE平分∠ADC且與⊙A相切于點E,求圖中陰影部分(扇形)的面積.

查看答案和解析>>

同步練習冊答案