(2007•金華)如圖,在由24個邊長都為1的小正三角形組成的正六邊形網(wǎng)格中,以格點P為直角頂點作格點直角三角形(即頂點均在格點上的三角形),請你寫出所有可能的直角三角形斜邊的長   
【答案】分析:在正六面體中,首先找出以點P為直角的直角三角形,然后應(yīng)用勾股定理求其斜邊長.
解答:解:通過作圖,知以點P為直角的三角形由四種情況,
如上圖,△PCB、△PCA、△PDB、△PDA,均是以點P為直角的直角三角形,
故:在Rt△PCB中,BC===2;
在Rt△PCA中,AC===
在Rt△PDB中,BD===;
在Rt△PAD中,AD===4.
故所有可能的直角三角形斜邊的長為4,2,,
點評:本題主要考查勾股定理的應(yīng)用,難易程度適中.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2007年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(08)(解析版) 題型:解答題

(2007•金華)如圖1,在平面直角坐標(biāo)系中,已知點A(0,4),點B在x正半軸上,且∠ABO=30度.動點P在線段AB上從點A向點B以每秒個單位的速度運動,設(shè)運動時間為t秒.在x軸上取兩點M,N作等邊△PMN.
(1)求直線AB的解析式;
(2)求等邊△PMN的邊長(用t的代數(shù)式表示),并求出當(dāng)?shù)冗叀鱌MN的頂點M運動到與原點O重合時t的值;
(3)如果取OB的中點D,以O(shè)D為邊在Rt△AOB內(nèi)部作如圖2所示的矩形ODCE,點C在線段AB上.設(shè)等邊△PMN和矩形ODCE重疊部分的面積為S,請求出當(dāng)0≤t≤2秒時S與t的函數(shù)關(guān)系式,并求出S的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年湖北省黃岡市數(shù)學(xué)中考精品試卷之三(解析版) 題型:解答題

(2007•金華)如圖1,在平面直角坐標(biāo)系中,已知點A(0,4),點B在x正半軸上,且∠ABO=30度.動點P在線段AB上從點A向點B以每秒個單位的速度運動,設(shè)運動時間為t秒.在x軸上取兩點M,N作等邊△PMN.
(1)求直線AB的解析式;
(2)求等邊△PMN的邊長(用t的代數(shù)式表示),并求出當(dāng)?shù)冗叀鱌MN的頂點M運動到與原點O重合時t的值;
(3)如果取OB的中點D,以O(shè)D為邊在Rt△AOB內(nèi)部作如圖2所示的矩形ODCE,點C在線段AB上.設(shè)等邊△PMN和矩形ODCE重疊部分的面積為S,請求出當(dāng)0≤t≤2秒時S與t的函數(shù)關(guān)系式,并求出S的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年江西省中考數(shù)學(xué)仿真模擬試卷(解析版) 題型:解答題

(2007•金華)如圖1,在平面直角坐標(biāo)系中,已知點A(0,4),點B在x正半軸上,且∠ABO=30度.動點P在線段AB上從點A向點B以每秒個單位的速度運動,設(shè)運動時間為t秒.在x軸上取兩點M,N作等邊△PMN.
(1)求直線AB的解析式;
(2)求等邊△PMN的邊長(用t的代數(shù)式表示),并求出當(dāng)?shù)冗叀鱌MN的頂點M運動到與原點O重合時t的值;
(3)如果取OB的中點D,以O(shè)D為邊在Rt△AOB內(nèi)部作如圖2所示的矩形ODCE,點C在線段AB上.設(shè)等邊△PMN和矩形ODCE重疊部分的面積為S,請求出當(dāng)0≤t≤2秒時S與t的函數(shù)關(guān)系式,并求出S的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年河北省中考數(shù)學(xué)模擬試卷(四)(解析版) 題型:解答題

(2007•金華)如圖1,在平面直角坐標(biāo)系中,已知點A(0,4),點B在x正半軸上,且∠ABO=30度.動點P在線段AB上從點A向點B以每秒個單位的速度運動,設(shè)運動時間為t秒.在x軸上取兩點M,N作等邊△PMN.
(1)求直線AB的解析式;
(2)求等邊△PMN的邊長(用t的代數(shù)式表示),并求出當(dāng)?shù)冗叀鱌MN的頂點M運動到與原點O重合時t的值;
(3)如果取OB的中點D,以O(shè)D為邊在Rt△AOB內(nèi)部作如圖2所示的矩形ODCE,點C在線段AB上.設(shè)等邊△PMN和矩形ODCE重疊部分的面積為S,請求出當(dāng)0≤t≤2秒時S與t的函數(shù)關(guān)系式,并求出S的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2007年浙江省金華市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2007•金華)如圖1,在平面直角坐標(biāo)系中,已知點A(0,4),點B在x正半軸上,且∠ABO=30度.動點P在線段AB上從點A向點B以每秒個單位的速度運動,設(shè)運動時間為t秒.在x軸上取兩點M,N作等邊△PMN.
(1)求直線AB的解析式;
(2)求等邊△PMN的邊長(用t的代數(shù)式表示),并求出當(dāng)?shù)冗叀鱌MN的頂點M運動到與原點O重合時t的值;
(3)如果取OB的中點D,以O(shè)D為邊在Rt△AOB內(nèi)部作如圖2所示的矩形ODCE,點C在線段AB上.設(shè)等邊△PMN和矩形ODCE重疊部分的面積為S,請求出當(dāng)0≤t≤2秒時S與t的函數(shù)關(guān)系式,并求出S的最大值.

查看答案和解析>>

同步練習(xí)冊答案