如圖,點E、F、G、H分別是任意四邊形ABCD中AD、BD、BC、CA的中點,當(dāng)四邊形ABCD的邊至少滿足            條件時,四邊形EFGH是矩形.
AB=CD

試題分析:
需添加條件AB=CD.
證明:∵點E,G分別是AD,BD的中點,
∴EG∥AB,且EG=AB同理HF∥AB,且HF= AB,
∴EGHF且EG=HF.
∴四邊形EGFH是平行四邊形.
∵EG=AB,
又可同理證得EH= CD,
∵AB=CD,
∴EG=EH,
∴四邊形EGFH是菱形.
故答案為:AB=CD.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,矩形ABCD的對角線相交于點O,DE∥CA,AE∥BD.

(1)求證:四邊形AODE是菱形;
(2)若將題設(shè)中“矩形ABCD”這一條件改為“菱形ABCD”,其余條件不變,則四邊形AODE的形狀是什么?說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在△ABC中,CD是AB邊上的中線,E是CD的中點,過點C作AB的平行線交AE的延長線于F,連結(jié)BF.

(1)求證:CF=BD;
(2)若CA=CB,∠ACB=90°,試判斷四邊形CDBF的形狀,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:如圖,E、F是平行四邊形ABCD的對角線AC上的兩點,AE=CF.

求證:(1)△ADF≌△CBE;(2)EB∥DF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,點E、F分別是ABCD的邊BC、AD上的點,且BE=DF.

(1)求證:四邊形AECF是平行四邊形;
(2)若AE=BE,∠BAC=90°,試判斷四邊形AECF的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

順次連結(jié)等腰梯形各邊中點所得的四邊形是(    ).
A.矩形B.菱形C.正方形D.等腰梯形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在正方形ABCD中,以BC為邊在正方形外部作等邊三角形BCE,連結(jié)DE,則∠CDE的度數(shù)為      °.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,在菱形ABCD中,∠BAD=80°,AB的垂直平分線交對角線AC于點F,垂足為E,連接DF,則∠CDF等于( 。
A.50°B.60°C.70°D.80°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

下列命題中的真命題是
A.三個角相等的四邊形是矩形
B.對角線互相垂直且相等的四邊形是正方形
C.順次連接矩形四邊中點得到的四邊形是菱形
D.正五邊形既是軸對稱圖形又是中心對稱圖形

查看答案和解析>>

同步練習(xí)冊答案