17.如圖,已知AD⊥BC于點(diǎn)D,EF⊥BC于點(diǎn)F,交AB于點(diǎn)G,交CA的延長(zhǎng)線于點(diǎn)E,∠E=∠AGE,求證:∠BAD=∠CAD.

分析 求出AD∥EF,根據(jù)平行線的性質(zhì)得出∠AGE=∠BAD,∠E=∠CAD,即可求出答案.

解答 證明:∵AD⊥BC,EF⊥BC(已知),
∴AD∥EF(在同一平面內(nèi),垂直于同一直線的兩條直線平行),
∴∠AGE=∠BAD(兩直線平行,內(nèi)錯(cuò)角相等),
∠E=∠CAD(兩直線平行,同位角相等),
∵∠AGE=∠E(已知),
∴∠BAD=∠CAD(等量代換).

點(diǎn)評(píng) 本題考查了平行線的性質(zhì)和判定,能靈活運(yùn)用定理進(jìn)行推理是解此題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

7.我們經(jīng)常做一種“石頭、剪刀、布”游戲,小亮與小明也一起玩這種游戲,兩同學(xué)同時(shí)出“剪刀”的概率是$\frac{1}{9}$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

8.某市為了鼓勵(lì)市民節(jié)約用水,規(guī)定自來(lái)水的收費(fèi)標(biāo)準(zhǔn)如下表:
每月每戶用水量每噸價(jià)(元)
不超過10噸部分0.50
超過10噸而不超過20噸部分0.75
超過20噸部分1.50
(1)現(xiàn)已知小明家四月份用水22噸,應(yīng)繳水費(fèi)15.5元;
(2)寫出每月每戶的水費(fèi)y(元)與用水量x(噸)之間的關(guān)系式;
(3)若小明家每月繳水費(fèi)17元,問:他家該月用水多少噸?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.如圖,在菱形ABCD中,∠BAD=80°,AB的垂直平分線交對(duì)角線AC于點(diǎn)F,E為垂足,連結(jié)DF,則∠CDF等于( 。
A.80°B.70°C.65°D.60°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

12.2017年深圳市男生體育中考考試項(xiàng)目為二項(xiàng),在200米和1000米兩個(gè)項(xiàng)目中選一個(gè)項(xiàng)目;另外在運(yùn)球上籃、實(shí)心球、跳繩、引體向上四個(gè)項(xiàng)目中選一個(gè).
(1)每位男考生一共有8種不同的選擇方案;
(2)若必勝,必成第一個(gè)項(xiàng)目都恰好選了200米,然后在第二組四個(gè)項(xiàng)目中各任意選取另外一個(gè)用畫樹狀圖或列表的方法求必勝和必成選擇同種方案的概率.
(友情提醒:各種方案可用A、B、C、…或①、②、③、…等符號(hào)來(lái)代表可簡(jiǎn)化解答過程)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

2.在平面直角坐標(biāo)系xOy中,正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…,按如圖的方式放置.點(diǎn)A1,A2,A3,…,An和點(diǎn)C1,C2,C3,…,Cn分別落在直線y=x+1和x軸上.拋物線L1過點(diǎn)A1,B1,且頂點(diǎn)在直線y=x+1上,拋物線L2過點(diǎn)A2,B2,且頂點(diǎn)在直線y=x+1上,…,按此規(guī)律,拋物線Ln過點(diǎn)An,Bn,且頂點(diǎn)也在直線y=x+1上,其中拋物線L2交正方形A1B1C1O的邊A1B1于點(diǎn)D1,拋物線L3交正方形A2B2C2C1的邊A2B2于點(diǎn)D2,…,拋物線Ln+1交正方形AnBnCnCn-1的邊AnBn于點(diǎn)Dn(其中n≥2且n為正整數(shù)).
(1)直接寫出下列點(diǎn)的坐標(biāo):B1(1,1),B2(3,2),B3(7,4);
(2)寫出拋物線L2、L3的解析式,并寫出其中一個(gè)解析式求解過程,再猜想拋物線Ln的頂點(diǎn)坐標(biāo)
(3)設(shè)A1D1=k1•D1B1,A2D2=k2•D2B2,試判斷k1與k2的數(shù)量關(guān)系并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

9.先化簡(jiǎn),再求值.$\frac{{x}^{2}+{y}^{2}}{x}$÷(x-$\frac{2xy-{y}^{2}}{x}$),其中x=2+$\sqrt{3}$,y=2-$\sqrt{3}$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

6.已知∠A的兩邊與∠B的兩邊分別平行,且∠A比∠B的3倍少40°,那么∠A=20°或125°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.我們定義一種新運(yùn)算,規(guī)定x☆y=x(y÷3)+y-2x,例如:5☆9=5×(9÷3)+9-2×5=14,則1☆(-6)的值為( 。
A.10B.6C.-10D.-6

查看答案和解析>>

同步練習(xí)冊(cè)答案