【題目】已知△ABC,∠ACB=90°,AC=BC=4.D是AB的中點(diǎn),P是平面上的一點(diǎn),且DP=1,連接BP、CP,將點(diǎn)B繞點(diǎn)P順時(shí)針旋轉(zhuǎn)90°得到點(diǎn)B′,連CB′,CB′的最大值是_____.
【答案】5.
【解析】
如圖,延長(zhǎng)CD到N,DN=CD,連接BN,NB′,CB′.利用相似三角形的性質(zhì)求出NB′,根據(jù)CB′≤CN+NB′求解即可
解:如圖,延長(zhǎng)CD到N,DN=CD,連接BN,NB′,CB′.
∴CA=CB,∠ACB=90°,BD=AD,
∴CD⊥AB,
∵DN=CD,
∴BN=BC=4,
∴∠CBD=∠DBN=45°,
∴∠CBN=90°,
∴CN=BC=4,
∵BB′=BP,BN=BD,∠B′BP=∠NBD=45°,
∴==,∠NBB′=∠PBD,
∴△NBB′∽△DBP,
∴==,
∵PD=1,
∴NB′=,
∵CB′≤NB′+CN=+4,
∴CB′≤5,
故答案為5.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,Rt△ABC的三個(gè)頂點(diǎn)分別是A(﹣3,2),B(0,4),C(0,2).
(1)將△ABC以點(diǎn)C為旋轉(zhuǎn)中心旋轉(zhuǎn)180°,畫出旋轉(zhuǎn)后對(duì)應(yīng)的△A1B1C1,平移△ABC,若點(diǎn)A的對(duì)應(yīng)點(diǎn)A2的坐標(biāo)為(0,﹣4),畫出平移后對(duì)應(yīng)的△A2B2C2;
(2)若將△A1B1C1繞某一點(diǎn)旋轉(zhuǎn)可以得到△A2B2C2,請(qǐng)直接寫出旋轉(zhuǎn)中心的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為測(cè)量觀光塔高度,如圖,一人先在附近一樓房的底端A點(diǎn)處觀測(cè)觀光塔頂端C處的仰角是60°,然后爬到該樓房頂端B點(diǎn)處觀測(cè)觀光塔底部D處的俯角是30°.已知樓房高AB約是45m,請(qǐng)根據(jù)以上觀測(cè)數(shù)據(jù)求觀光塔的高.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知直線與兩坐標(biāo)軸分別交于A、B兩點(diǎn),拋物線 經(jīng)過(guò)點(diǎn)A、B,點(diǎn)P為直線AB上的一個(gè)動(dòng)點(diǎn),過(guò)P作y軸的平行線與拋物線交于C點(diǎn), 拋物線與x軸另一個(gè)交點(diǎn)為D.
(1)求圖中拋物線的解析式;
(2)當(dāng)點(diǎn)P在線段AB上運(yùn)動(dòng)時(shí),求線段PC的長(zhǎng)度的最大值;
(3)在直線AB上是否存在點(diǎn)P,使得以O、A、P、C為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)求出此時(shí)點(diǎn)P 的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=ax2﹣2ax+c的圖象經(jīng)過(guò)點(diǎn)C(0,﹣2),頂點(diǎn)D的坐標(biāo)為(1,﹣),與x軸交于A、B兩點(diǎn).
(1)求拋物線的解析式.
(2)連接AC,E為直線AC上一點(diǎn),當(dāng)△AOC∽△AEB時(shí),求點(diǎn)E的坐標(biāo)和的值.
(3)點(diǎn)C關(guān)于x軸的對(duì)稱點(diǎn)為H,當(dāng)FC+BF取最小值時(shí),在拋物線的對(duì)稱軸上是否存在點(diǎn)Q,使△QHF是直角三角形?若存在,請(qǐng)求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,拋物線y=ax2+bx+c與x軸交于點(diǎn)A(﹣1,0)、B(3,0),與y軸交于點(diǎn)C(0,﹣3).
(1)求拋物線的解析式;
(2)拋物線上是否存在一點(diǎn)P,使得∠APB=∠ACO成立?若存在,求出點(diǎn)P的坐標(biāo):若不存在,請(qǐng)說(shuō)明理由.
(3)我們規(guī)定:對(duì)于直線l1:y=k1x+b,直線l2:y=k2x+b2,若直線k1k2=﹣1,則直線l1⊥l2;反過(guò)來(lái)也成立.請(qǐng)根據(jù)這個(gè)規(guī)定解決下列可題:
如圖2,將該拋物線向上平移過(guò)原點(diǎn)與直線y=kx(k>0)另交于C點(diǎn).點(diǎn)T為該二次函數(shù)圖象上位于直線OC下方的動(dòng)點(diǎn),過(guò)點(diǎn)T作直線TM⊥OC′,重足為點(diǎn)M,且M在線段OC′上(不與O、C′重合),過(guò)點(diǎn)T作直線TN∥y軸交OC'于點(diǎn)N.若在點(diǎn)T運(yùn)動(dòng)的過(guò)程中,為常數(shù),試確定k的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線y=ax2+bx+3在坐標(biāo)系中的位置如圖所示,它與x軸、y軸的交點(diǎn)分別為A,B,點(diǎn)P是其對(duì)稱軸x=1上的動(dòng)點(diǎn),根據(jù)圖中提供的信息,給出以下結(jié)論:①2a+b=0;②x=3是ax2+bx+3=0的一個(gè)根;③△PAB周長(zhǎng)的最小值是+3.其中正確的是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中, ,點(diǎn)在邊上移動(dòng)(點(diǎn)不與點(diǎn), 重合),滿足,且點(diǎn)、分別在邊、上.
()求證: .
()當(dāng)點(diǎn)移動(dòng)到的中點(diǎn)時(shí),求證: 平分.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】京劇臉譜是京劇藝術(shù)獨(dú)特的表現(xiàn)形式.京劇表演中,經(jīng)常用臉譜象征人物的性格,品質(zhì),甚至角色和命運(yùn).如紅臉代表忠心耿直,黑臉代表強(qiáng)悍勇猛.現(xiàn)有三張不透明的卡片,其中兩張卡片的正面圖案為“紅臉”,另外一張卡片的正面圖案為“黑臉”,卡片除正面圖案不同外,其余均相同,將這三張卡片背面向上洗勻,從中隨機(jī)抽取一張,記錄圖案后放回,重新洗勻后再?gòu)闹须S機(jī)抽取一張.
請(qǐng)用畫樹(shù)狀圖或列表的方法,求抽出的兩張卡片上的圖案都是“紅臉”的概率.(圖案為“紅臉”的兩張卡片分別記為A1、A2,圖案為“黑臉”的卡片記為B)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com