【題目】如圖,將一條數(shù)軸在原點(diǎn)和點(diǎn)處各折一下,得到一條“折線數(shù)軸”,圖中點(diǎn)表示-12,點(diǎn)表示10,點(diǎn)表示20,我們稱(chēng)點(diǎn)和點(diǎn)在數(shù)軸上相距32個(gè)長(zhǎng)度單位.動(dòng)點(diǎn)從點(diǎn)出發(fā),以2單位/秒的速度沿著“折線數(shù)軸”的正方向運(yùn)動(dòng),從點(diǎn)運(yùn)動(dòng)到點(diǎn)期間速度變?yōu)樵瓉?lái)的一半,之后立刻恢復(fù)原速;同時(shí),動(dòng)點(diǎn)從點(diǎn)出發(fā),以1單位/秒的速度沿著折線數(shù)軸的負(fù)方向運(yùn)動(dòng),從點(diǎn)運(yùn)動(dòng)到點(diǎn)期間速度變?yōu)樵瓉?lái)的兩倍,之后也立刻恢復(fù)原速.設(shè)運(yùn)動(dòng)的時(shí)間為秒.則:
(1)動(dòng)點(diǎn)從點(diǎn)運(yùn)動(dòng)至點(diǎn)需要時(shí)間多少秒?
(2)若,兩點(diǎn)在點(diǎn)處相遇,則點(diǎn)在折線數(shù)軸上所表示的數(shù)是多少?
(3)求當(dāng)為何值時(shí),、兩點(diǎn)在數(shù)軸上相距的長(zhǎng)度與、兩點(diǎn)在數(shù)軸上相距的長(zhǎng)度相等.
【答案】(1)21;(2)6;(3)當(dāng)時(shí),.
【解析】
(1)根據(jù)路程除以速度等于時(shí)間,可得答案;
(2)根據(jù)相遇時(shí),兩點(diǎn)在線段上,根據(jù)=10,可得方程,根據(jù)解方程,可得答案;
(3)根據(jù)PO與BQ的時(shí)間相等,可得方程,根據(jù)解方程,可得答案.
解:(1)點(diǎn)P運(yùn)動(dòng)至點(diǎn)C時(shí),所需時(shí)間t=12÷2+10÷1+10÷2=21(秒),
答:動(dòng)點(diǎn)P從點(diǎn)A運(yùn)動(dòng)至C點(diǎn)需要21s ;
(2)由題意可得,
,兩點(diǎn)在線段上相遇
∴,
∴,
∴所對(duì)的數(shù)字為12-6=6;
(3)當(dāng)點(diǎn)在上,點(diǎn)在上時(shí),,,
∵,
∴,
∴;
當(dāng)點(diǎn)在上,點(diǎn)在上時(shí),,,
∵,
∴,
∴;
當(dāng)點(diǎn)在上,點(diǎn)在上時(shí),,,
∵,
∴,
∴,
當(dāng)點(diǎn)在上,點(diǎn)在上時(shí),,無(wú)解
當(dāng)點(diǎn)在上,點(diǎn)在上時(shí),,,
∵,
∴,
∴
∴當(dāng)時(shí),.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀理解:若一個(gè)三位數(shù)是312,則百位上數(shù)字為3,十位上數(shù)字為1,個(gè)位上數(shù)字為2,這個(gè)三位數(shù)可表示為3×100+1×10+2;若一個(gè)三位數(shù)是﹣312,則百位上數(shù)字為3,十位上數(shù)字為1,個(gè)位上數(shù)字為2,這個(gè)三位數(shù)可表示為﹣(3×100+1×10+2);
應(yīng)用:有一個(gè)正的四位數(shù),千位上數(shù)字為a,百位上數(shù)字為b,十位上數(shù)字為c,個(gè)位數(shù)字為d,且a>d,b﹣c>1.按順序完成一下運(yùn)算;
第一步:交換千位和個(gè)位上的數(shù)字也交換百位和十位上的數(shù)字,而構(gòu)成另一個(gè)四位數(shù);
第二步:用原四位數(shù)減去第一步構(gòu)成的四位數(shù),把這個(gè)新四位數(shù)記為M;
第三步:交換M的百位和十位上的數(shù)字,又構(gòu)成一個(gè)新四位數(shù),記為N;
第四部,將M和N相加
(1)第一步構(gòu)成的另一個(gè)四位數(shù)可表示為 ;
(2)試判斷M百位和十位的數(shù)字之和是否為定值?請(qǐng)說(shuō)明理由.
(3)若M和N相加的值為8892,求a﹣d的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑,C為⊙O上一點(diǎn),CD平分∠ACB交⊙O于點(diǎn)D.
(1)AD與BD相等嗎?為什么?
(2)若AB=10,AC=6,求CD的長(zhǎng);
(3)若P為⊙O上異于A、B、C、D的點(diǎn),試探究PA、PD、PB之間的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,己知正方形ABCD的邊長(zhǎng)為4, P是對(duì)角線BD上一點(diǎn),PE⊥BC于點(diǎn)E, PF⊥CD于點(diǎn)F,連接AP, EF.給出下列結(jié)論:①PD=EC:②四邊形PECF的周長(zhǎng)為8;③△APD一定是等腰三角形:④AP=EF;⑤EF的最小值為;⑥AP⊥EF.其中正確結(jié)論的序號(hào)為( )
A. ①②④⑤⑥B. ①②④⑤
C. ②④⑤D. ②④⑤⑥
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)A,B在數(shù)軸上表示的數(shù)分別為-2與+6,動(dòng)點(diǎn)P從點(diǎn)A出發(fā),沿A→B以每秒2個(gè)單位長(zhǎng)度的速度向終點(diǎn)B運(yùn)動(dòng),同時(shí),動(dòng)點(diǎn)Q從點(diǎn)B出發(fā),沿B→A以每秒4個(gè)單位長(zhǎng)度的速度向終點(diǎn)A運(yùn)動(dòng),當(dāng)一個(gè)點(diǎn)到達(dá)時(shí),另一點(diǎn)也隨之停止運(yùn)動(dòng).
(1)當(dāng)Q為AB的中點(diǎn)時(shí),求線段PQ的長(zhǎng);
(2)當(dāng)Q為PB的中點(diǎn)時(shí),求點(diǎn)P表示的數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“如果二次函數(shù)y=ax2+bx+c的圖象與x軸有兩個(gè)公共點(diǎn),那么一元二次方程ax2+bx+c=0有兩個(gè)不相等的實(shí)數(shù)根.”請(qǐng)根據(jù)你對(duì)這句話的理解,解決下面問(wèn)題:若m、n(m<n)是關(guān)于x的方程1﹣(x﹣a)(x﹣b)=0的兩根,且a<b,則a、b、m、n的大小關(guān)系是( ).
A. B.
C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的一條弦,E是AB的中點(diǎn),過(guò)點(diǎn)E作EC⊥OA于點(diǎn)C,過(guò)點(diǎn)B作⊙O的切線交CE的延長(zhǎng)線于點(diǎn)D.
(1)求證:DB=DE;
(2)若AB=12,BD=5,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直線L上依次擺放著七個(gè)正方形,已知斜放置的三個(gè)正方形的面積分別為1、2、3,正放置的四個(gè)正方形的面積依次是S1、S2、S3、S4 , 則S1+2S2+2S3+S4=()
A. 5 B. 4 C. 6 D. 10
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方形ABCD中,O是對(duì)角線AC與BD的交點(diǎn),M是BC邊上的動(dòng)點(diǎn)(點(diǎn)M不與B、C重合),CN⊥DM,CN與AB交于點(diǎn)N,連接OM、ON、MN.下列四個(gè)結(jié)論:①△CNB≌△DMC;②△CON≌△DOM;③AN2+CM2=MN2;④若AB=2,則S△OMN的最小值是.其中正確結(jié)論的個(gè)數(shù)是( )
A.1B.2C.3D.4
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com