【題目】如圖,已知拋物線的頂點為A(1,4),拋物線與y軸交于點B(0,3),與x軸交于C、D兩點.點P是x軸上的一個動點.
(1)求此拋物線的解析式;
(2)求C、D兩點坐標(biāo)及△BCD的面積;
(3)若點P在x軸上方的拋物線上,滿足S△PCD=S△BCD,求點P的坐標(biāo).
【答案】(1)y=﹣(x﹣1)2+4;(2)C(﹣1,0),D(3,0);6;(3)P(1+,),或P(1﹣,)
【解析】
試題分析:(1)設(shè)拋物線頂點式解析式y(tǒng)=a(x﹣1)2+4,然后把點B的坐標(biāo)代入求出a的值,即可得解
(2)令y=0,解方程得出點C,D坐標(biāo),再用三角形面積公式即可得出結(jié)論;(3)、先根據(jù)面積關(guān)系求出點P的坐標(biāo),求出點P的縱坐標(biāo),代入拋物線解析式即可求出點P的坐標(biāo).
試題解析:(1)、∵拋物線的頂點為A(1,4), ∴設(shè)拋物線的解析式y(tǒng)=a(x﹣1)2+4,
把點B(0,3)代入得,a+4=3, 解得a=﹣1, ∴拋物線的解析式為y=﹣(x﹣1)2+4;
(2)由(1)知,拋物線的解析式為y=﹣(x﹣1)2+4; 令y=0,則0=﹣(x﹣1)2+4,
∴x=﹣1或x=3, ∴C(﹣1,0),D(3,0); ∴CD=4,∴S△BCD=CD×|yB|=×4×3=6;
(3)由(2)知,S△BCD=CD×|yB|=×4×3=6;CD=4, ∵S△PCD=S△BCD,
∴S△PCD=CD×|yP|=×4×|yP|=3, ∴|yP|=, ∵點P在x軸上方的拋物線上,
∴yP>0, ∴yP=, ∵拋物線的解析式為y=﹣(x﹣1)2+4; ∴=﹣(x﹣1)2+4,
∴x=1±, ∴P(1+,),或P(1﹣,).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果函數(shù)y=ax+b(a<0,b<0)和y=kx(k>0)的圖象交于點P,那么點P應(yīng)該位于( )
A.第一象限
B.第二象限
C.第三象限
D.第四象限
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】點A(﹣2,y1),B(3,y2)都在一次函數(shù)y=﹣2x+3的圖象上,則y1 , y2的大小關(guān)系是( )
A.y1>y2
B.y1=y2
C.y1<y2
D.不能確定
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=x2經(jīng)過平移得到拋物線y=x2﹣2x,其對稱軸與兩拋物線所圍成的陰影部分的面積是__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某超市對今年前兩個季度每月銷售總量進(jìn)行統(tǒng)計,為了更清楚地看出銷售總量的總趨勢是上升還是下降,應(yīng)選用統(tǒng)計圖來描述數(shù)據(jù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列事件中,是必然事件的是( )
A. 拋擲一枚均勻的硬幣,正面朝上
B. 拋出的石塊會下落
C. 早上的太陽從西方升起
D. 從一副洗勻的撲克中任意抽出一張,恰好是方塊2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,陽光通過窗口照到教室內(nèi),豎直窗框在地面上留下2.1 m長的影子如圖所示,已知窗框的影子DE的點E到窗下墻腳的距離CE=3.9 m,窗口底邊離地面的距離BC=1.2 m,試求窗口的高度(即AB的值).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com