【題目】如圖,在正方形ABCD中,點(diǎn)P是AB上一動(dòng)點(diǎn)(不與A,B重合),對(duì)角線AC,BD相交于點(diǎn)O,過(guò)點(diǎn)P分別作AC,BD的垂線,分別交AC,BD于點(diǎn)E,F(xiàn),交AD,BC于點(diǎn)M,N.下列結(jié)論:
①△APE≌△AME;②PM+PN=AC;③PE2+PF2=PO2;④△POF∽△BNF;⑤當(dāng)△PMN∽△AMP時(shí),點(diǎn)P是AB的中點(diǎn).
其中正確的結(jié)論有
A.5個(gè) B.4個(gè) C.3個(gè) D.2個(gè)
【答案】B
【解析】
試題∵四邊形ABCD是正方形,∴∠BAC=∠DAC=45°。
∵在△APE和△AME中,,
∴△APE≌△AME。故①正確。
∴PE=EM=PM。
同理,F(xiàn)P=FN=NP。
∵正方形ABCD中AC⊥BD,又∵PE⊥AC,PF⊥BD,
∴∠PEO=∠EOF=∠PFO=90°,且△APE中AE=PE。
∴四邊形PEOF是矩形。∴PF=OE。∴PE+PF=OA。
又∵PE=EM=PM,F(xiàn)P=FN=NP,OA=AC,∴PM+PN=AC。故②正確。
∵四邊形PEOF是矩形,∴PE=OF。
在直角△OPF中,OF2+PF2=PO2,∴PE2+PF2=PO2。故③正確。
∵△BNF是等腰直角三角形,而△POF不一定是。故④錯(cuò)誤;
∵△AMP是等腰直角三角形,當(dāng)△PMN∽△AMP時(shí),△PMN是等腰直角三角形,
∴PM=PN。
又∵△AMP和△BPN都是等腰直角三角形,∴AP=BP,即P時(shí)AB的中點(diǎn)。故⑤正確。
綜上所述,正確的結(jié)論有①②③⑤四個(gè)。故選B。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】有一塊形狀如圖所示的玻璃,不小心把DEF部分打碎,現(xiàn)在只測(cè)得AB=60cm,BC=80cm,∠A=120°,∠B=60°,∠C=150°,你能設(shè)計(jì)一個(gè)方案,根據(jù)測(cè)得的數(shù)據(jù)求出AD的長(zhǎng)嗎?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知等邊△ABC,AB=16,以AB為直徑的半圓與BC邊交于點(diǎn)D,過(guò)點(diǎn)D作DF⊥AC,垂足為F,過(guò)點(diǎn)F作FG⊥AB,垂足為G,連結(jié)GD.
(1)求證:DF是⊙O的切線;
(2)求FG的長(zhǎng);
(3)求tan∠FGD的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,拋物線的頂點(diǎn)在直線上.
(1)求直線的函數(shù)表達(dá)式;
(2)現(xiàn)將拋物線沿該直線方向進(jìn)行平移,平移后的拋物線的頂點(diǎn)為點(diǎn),與直線的另一個(gè)交點(diǎn)為點(diǎn),與軸的右交點(diǎn)為點(diǎn)(點(diǎn)不與點(diǎn)重合),連接,.
①如圖,在平移過(guò)程中,當(dāng)點(diǎn)在第四象限且的面積為60時(shí),求平移的距離的長(zhǎng);
②在平移過(guò)程中,當(dāng)是以線段為一條直角邊的直角三角形時(shí),求出所有滿足條件的點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)進(jìn)行數(shù)值轉(zhuǎn)換的運(yùn)行程序如圖所示,從“輸入實(shí)數(shù)x”到“結(jié)果是否大于0”稱為“一次操作”(1)判斷:(正確的打“√”,錯(cuò)誤的打“×”)
①當(dāng)輸入x=3后,程序操作僅進(jìn)行一次就停止.
②當(dāng)輸入x為負(fù)數(shù)時(shí),無(wú)論x取何負(fù)數(shù),輸出的結(jié)果總比輸入數(shù)大.
(2)探究:是否存在正整數(shù)x,使程序能進(jìn)行兩次操作,并且輸出結(jié)果小于12?若存在,請(qǐng)求出所有符合條件的x的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖:已知△ABC中,AB=5,BC=3,AC=4,PQ∥AB,P點(diǎn)在AC上(與A、C不重合),Q在BC上.
(1)當(dāng)△PQC的面積與四邊形PABQ的面積相等時(shí),求CP的長(zhǎng);
(2)當(dāng)△PQC的周長(zhǎng)與四邊形PABQ的周長(zhǎng)相等時(shí),求CP的長(zhǎng);
(3)試問(wèn):在AB上是否存在一點(diǎn)M,使得△PQM為等腰直角三角形?若不存在,請(qǐng)簡(jiǎn)要說(shuō)明理由;若存在,請(qǐng)求出PQ的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,已知AB是⊙O的直徑,AC是⊙O的弦,過(guò)O點(diǎn)作OF⊥AB交⊙O于點(diǎn)D,交AC于點(diǎn)E,交BC的延長(zhǎng)線于點(diǎn)F,點(diǎn)G是EF的中點(diǎn),連接CG
(1)判斷CG與⊙O的位置關(guān)系,并說(shuō)明理由;
(2)求證:2OB2=BCBF;
(3)如圖2,當(dāng)∠DCE=2∠F,CE=3,DG=2.5時(shí),求DE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,P是半圓弧上一動(dòng)點(diǎn),連接PA、PB,過(guò)圓心O作交PA于點(diǎn)C,連接已知,設(shè)O,C兩點(diǎn)間的距離為xcm,B,C兩點(diǎn)間的距離為ycm.
小東根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對(duì)函數(shù)y隨自變量x的變化而變化的規(guī)律進(jìn)行探究.
下面是小東的探究過(guò)程,請(qǐng)補(bǔ)充完整:
通過(guò)取點(diǎn)、畫(huà)圖、測(cè)量,得到了x與y的幾組值,如下表:
0 | 1 | 2 | 3 | ||||
3 | 6 |
說(shuō)明:補(bǔ)全表格時(shí)相關(guān)數(shù)據(jù)保留一位小數(shù)
建立直角坐標(biāo)系,描出以補(bǔ)全后的表中各對(duì)應(yīng)值為坐標(biāo)的點(diǎn),畫(huà)出該函數(shù)的圖象;
結(jié)合畫(huà)出的函數(shù)圖象,解決問(wèn)題:直接寫出周長(zhǎng)C的取值范圍是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某種蔬菜每千克售價(jià)(元)與銷售月份之間的關(guān)系如圖1所示,每千克成本(元)與銷售月份之間的關(guān)系如圖2所示,其中圖1中的點(diǎn)在同一條線段上,圖2中的點(diǎn)在同一條拋物線上,且拋物線的最低點(diǎn)的坐標(biāo)為(6,1).
(1)求出與之間滿足的函數(shù)表達(dá)式,并直接寫出的取值范圍;
(2)求出與之間滿足的函數(shù)表達(dá)式;
(3)設(shè)這種蔬菜每千克收益為元,試問(wèn)在哪個(gè)月份出售這種蔬菜,將取得最大值?并求出此最大值.(收益=售價(jià)-成本)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com