【題目】如圖,等邊三角形的邊長為4,點(diǎn)是△的中心,.繞點(diǎn)旋轉(zhuǎn),分別交線段于兩點(diǎn),連接,給出下列四個結(jié)論:①;②;③四邊形的面積始終等于;④△周長的最小值為6,上述結(jié)論中正確的個數(shù)是( )
A. 1 B. 2 C. 3 D. 4
【答案】C
【解析】
連接BO,CO,可以證明△OBD≌△OCE,得到BD=CE,OD=OE,從而判斷①正確;
通過特殊位置,當(dāng)D與B重合時,E與C重合,可判斷△BDE的面積與△ODE的面積的大小,從而判斷②錯誤;
由△OBD≌△OCE,得到四邊形ODBE的面積=△OBC的面積,從而判斷③正確;
過D作DI⊥BC于I.設(shè)BD=x,則BI=,DI=.由BD=EC,BC=4,得到BE=4-x,IE= .在Rt△DIE中,DE== =,△BDE的周長=BD+BE+DE= 4+DE,當(dāng)DE最小時,△BDE的周長最小,從而判斷出④正確.
連接BO,CO,過O作OH⊥BC于H.
∵O為△ABC的中心,∴BO=CO,∠DBO=∠OBC=∠OCB=30°,∠BOC=120°.
∵∠DOE=120°,∴∠DOB=∠COE.在△OBD和△OCE中,∵∠DOB=∠COE,OB=OC,∠DBO=∠ECO,∴△OBD≌△OCE,∴BD=CE,OD=OE,故①正確;
當(dāng)D與B重合時,E與C重合,此時△BDE的面積=0,△ODE的面積>0,兩者不相等,故②錯誤;
∵O為中心,OH⊥BC,∴BH=HC=2.
∵∠OBH=30°,∴OH=BH=,∴△OBC的面積==.
∵△OBD≌△OCE,∴四邊形ODBE的面積=△OBC的面積=,故③正確;
過D作DI⊥BC于I.設(shè)BD=x,則BI=,DI=.
∵BD=EC,BC=4,∴BE=4-x,IE=BE-BI=.在Rt△DIE中,DE== = =,當(dāng)x=2時,DE的值最小為2,△BDE的周長=BD+BE+DE=BE+EC+DE=BC+DE=4+DE,當(dāng)DE最小時,△BDE的周長最小,∴△BDE的周長的最小值=4+2=6.故④正確.
故選C.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】A、B兩名同學(xué)在同一個學(xué)校上學(xué),B同學(xué)上學(xué)的路上經(jīng)過A同學(xué)家。A同學(xué)步行,B同學(xué)騎自行車,某天,A,B兩名同學(xué)同時從家出發(fā)到學(xué)校,如圖,A表示A同學(xué)離B同學(xué)家的路程A(m)與行走時間(min)之間的函數(shù)關(guān)系圖象,B表示B同學(xué)離家的路程B(m)與行走時間(min)之間的函數(shù)關(guān)系圖象.
(1)A,B兩名同學(xué)的家相距________m.
(2)B同學(xué)走了一段路后,自行車發(fā)生故障,進(jìn)行修理,修理自行車所用的時間是 _____min.
(3)B同學(xué)出發(fā)后______min與A同學(xué)相遇.
(4)求出A同學(xué)離B同學(xué)家的路程A與時間的函數(shù)關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,三個頂點(diǎn)的坐標(biāo)分別為,,。
(1)請畫出關(guān)于軸對稱后得到的;
(2)直接寫出點(diǎn),點(diǎn),點(diǎn)的坐標(biāo);
(3)在軸上尋找一個點(diǎn),使的周長最小,并直接寫出的周長的最小值。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個批發(fā)商銷售成本為20元/千克的某產(chǎn)品,根據(jù)物價部門規(guī)定:該產(chǎn)品每千克售價不得超過90元,在銷售過程中發(fā)現(xiàn)的售量y(千克)與售價x(元/千克)滿足一次函數(shù)關(guān)系,對應(yīng)關(guān)系如下表:
售價x(元/千克) | … | 50 | 60 | 70 | 80 | … |
銷售量y(千克) | … | 100 | 90 | 80 | 70 | … |
(1)求y與x的函數(shù)關(guān)系式;
(2)該批發(fā)商若想獲得4000元的利潤,應(yīng)將售價定為多少元?
(3)該產(chǎn)品每千克售價為多少元時,批發(fā)商獲得的利潤w(元)最大?此時的最大利潤為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】形如:的函數(shù)叫二次函數(shù),它的圖象是一條拋物線.類比一元一次方程的解可以看成兩條直線的交點(diǎn)的橫坐標(biāo);則一元二次方程的解可以看成拋物線與直線(軸)的交點(diǎn)的橫坐標(biāo);也可以看成是拋物線與直線________的交點(diǎn)的橫坐標(biāo);也可以看成是拋物線________與直線的交點(diǎn)的橫坐標(biāo);
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】滿足下列條件的△ABC不是直角三角形的是( 。
A.∠A:∠B:∠C=2:3:5B.∠A:∠B:∠C=3:4:5
C.∠A﹣∠B=∠CD.BC=3,AC=4,AB=5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,E、F分別是BC邊,CD邊的中點(diǎn),AE、AF分別交BD于點(diǎn)G,H,設(shè)△AGH的面積為S1,平行四邊形ABCD的面積為S2,則S1:S2的值為( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=x2﹣(m+1)x+m
(1)求證:拋物線與x軸一定有交點(diǎn);
(2)若拋物線與x軸交于A(x1,0),B(x2,0)兩點(diǎn),x1<0<x2,且,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】學(xué)習(xí)了統(tǒng)計知識后,數(shù)學(xué)老師請數(shù)學(xué)興趣小組的同學(xué)就本班同學(xué)的上學(xué)方式進(jìn)行了一次調(diào)查統(tǒng)計.如圖甲乙是數(shù)學(xué)興趣小組的同學(xué)們通過手機(jī)和整理數(shù)據(jù)后,繪制的兩幅不完整的統(tǒng)計圖.
請你根據(jù)圖中提供的信息,解答一下的問題:
(1)在扇形統(tǒng)計圖中,計算出“步行”部分所應(yīng)對的圓心角的度數(shù).
(2)請問該班共有多少名學(xué)生?
(3)在圖中將表示“乘車”的部分補(bǔ)充完整.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com