【題目】如圖1,已知拋物線過點.
(1)求拋物線的解析式及其頂點C的坐標;
(2)設點D是x軸上一點,當時,求點D的坐標;
(3)如圖2.拋物線與y軸交于點E,點P是該拋物線上位于第二象限的點,線段PA交BE于點M,交y軸于點N,和的面積分別為,求的最大值.
【答案】(1),頂點C的坐標為-(-1,4);(2);(3)的最大值為.
【解析】
(1)利用待定系數(shù)法,將A,B的坐標代入即可求得二次函數(shù)的解析式;
(2)設拋物線對稱軸與x軸交于點H,在中,可求得,推出,可證,利用相似三角形的性質(zhì)可求出AD的長度,進一步可求出點D的坐標,由對稱性可直接求出另一種情況;
(3)設代入,求出直線PA的解析式,求出點N的坐標,由,可推出,再用含a的代數(shù)式表示出來,最終可用函數(shù)的思想來求出其最大值.
解:(1)由題意把點代入,
得,,
解得,
∴此拋物線解析式為:,頂點C的坐標為
(2)∵拋物線頂點,
∴拋物線對稱軸為直線,
設拋物線對稱軸與x軸交于點H,
則,
在中,,
,
∴當時,
如圖1,當點D在對稱軸左側時,
,
,
,
,
,
當點D在對稱軸右側時,點D關于直線的對稱點D'的坐標為,
∴點D的坐標為或;
(3)設,
將代入,
得,,
解得,,
當時,,
如圖2,
,
由二次函數(shù)的性質(zhì)知,當時,有最大值,
和的面積分別為m、n,
的最大值為.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=﹣x2+bx+c的圖象與x軸交于A(﹣4,0)和點B兩點,與y軸交于點C,拋物線的對稱軸是x=﹣1與x軸交于點D.
(1)求拋物線的函數(shù)表達式;
(2)若點P(m,n)為拋物線上一點,且﹣4<m<﹣1,過點P作PE∥x軸,交拋物線的對稱軸x=﹣1于點E,作PF⊥x軸于點F,得到矩形PEDF,求矩形PEDF周長的最大值;
(3)點Q為拋物線對稱軸x=﹣1上一點,是否存在點Q,使以點Q,B,C為頂點的三角形是直角三角形?若存在,請直接寫出點Q的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,、分別為軸、軸正半軸上的點,以、為邊,在一象限內(nèi)作矩形,且.將矩形翻折,使點與原點重合,折痕為,點的對應點落在第四象限,過點的反比例函數(shù),其圖象恰好過的中點,則點的坐標為________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】隨著智能手機的普及率越來越高以及移動支付的快捷高效性,中國移動支付在世界處于領先水平.為了解人們平時最喜歡用哪種移動支付方式,因此在某步行街對行人進行隨機抽樣調(diào)查,以下是根據(jù)調(diào)查結果分別整理的不完整的統(tǒng)計表和統(tǒng)計圖.
移動支付方式 | 支付寶 | 微信 | 其他 |
人數(shù)/人 |
| 200 | 75 |
請你根據(jù)上述統(tǒng)計表和統(tǒng)計圖提供的信息.完成下列問題:
(1)在此次調(diào)查中,使用支付寶支付的人數(shù);
(2)求表示微信支付的扇形所對的圓心角度數(shù);
(3)某天該步行街人流量為10萬人,其中30%的人購物并選擇移動支付,請你依據(jù)此次調(diào)查獲得的信息估計一下當天使用微信支付的人數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線y=4﹣x與雙曲線y交于A,B兩點,過B作直線BC⊥y軸,垂足為C,則以OA為直徑的圓與直線BC的交點坐標是_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,反比例函數(shù)的圖象與直線都經(jīng)過點.
(1)求反比例函數(shù)和直線的解析式.
(2)將一次函數(shù)的圖象沿軸向下平移個單位長度,使平移后的圖象與反比例函數(shù)的圖象有且只有一個交點,求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系 xOy 中,菱形 ABOC 的頂點 O 在坐標原點,邊 BO 在 x 軸的負半軸上,頂點 C的坐標為(﹣3,4),反比例函數(shù) y 的圖象與菱形對角線 AO 交于 D 點,連接 BD,當 BD⊥x 軸時,k的值是( )
A.B.C.﹣12D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】設都是實數(shù),且.我們規(guī)定:滿足不等式的實數(shù)的所有值的全體叫做閉區(qū)間、表示為.對于一個函數(shù),如果它的自變量與函數(shù)值滿足:當時,有,我們就稱此函數(shù)是閉區(qū)間上的“閉函數(shù)”.
(1)反比例函數(shù)是閉區(qū)間上的“閉函數(shù)”嗎?請判斷并說明理由;
(2)若一次函數(shù)是閉區(qū)間上的“閉函數(shù)”,求此一次函數(shù)的解析式;
(3)若實數(shù)滿足.且,當二次函數(shù)是閉區(qū)間上的“閉函數(shù)”時,求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某學校為了解全校學生對電視節(jié)目的喜愛情況(新聞、體育、動畫、娛樂、戲曲),從全校學生中隨機抽取部分學生進行問卷調(diào)查,并把調(diào)查結果繪制成兩幅不完整的統(tǒng)計圖.
請根據(jù)以上信息,解答下列問題:
(1)這次被調(diào)查的學生共有多少人?并將條形統(tǒng)計圖補充完整;
(2)在扇形統(tǒng)計圖中,“體育”對應的圓心角的度數(shù)是?
(3)若該校約有1500名學生,估計全校學生中喜歡娛樂節(jié)目的有多少人?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com