如圖,∠PAQ是直角,半徑為5的⊙O與AP相切于點T,與AQ相交于兩點B、C.

(1)BT是否平分∠OBA?證明你的結論;

(2)若已知AT=4,試求AB的長.

答案:
解析:

  (1)平分.證明:連接OT,則∵PT切⊙OT,∴OTPT,故∠OTA.從而∠OBT=∠OTB-∠ATB=∠ABT,即BT平分∠OBA

  (2)OOMBCM,則四邊形OTAM是矩形,故OMAT4,AMOT5.在RtOBM中,OB5OM4,故BM3.從而ABAMBM532


練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

25、如圖,∠PAQ是直角,半徑為5的⊙O與AP相切于點T,與AQ相交于兩點B、C.
(1)BT是否平分∠OBA?證明你的結論;
(2)若已知AT=4,試求AB的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,∠PAQ是直角,⊙O與AP相切于點T,與AQ交于B、C兩點.
(1)BT是否平分∠OBA,說明你的理由;
(2)若已知AT=4,弦BC=6,試求⊙O的半徑R.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2004•江西)如圖,∠PAQ是直角,半徑為5的⊙O與AP相切于點T,與AQ相交于兩點B、C.
(1)BT是否平分∠OBA?
;
(2)若已知AT=4,AB=
2
2

查看答案和解析>>

科目:初中數(shù)學 來源:2012-2013學年四川省南充市南部縣鐵佛塘學校九年級(上)第二次月考數(shù)學試卷(解析版) 題型:解答題

如圖,∠PAQ是直角,⊙O與AP相切于點T,與AQ交于B、C兩點.
(1)BT是否平分∠OBA,說明你的理由;
(2)若已知AT=4,弦BC=6,試求⊙O的半徑R.

查看答案和解析>>

科目:初中數(shù)學 來源:2004年江西省南昌市中考數(shù)學試卷(解析版) 題型:解答題

(2004•江西)如圖,∠PAQ是直角,半徑為5的⊙O與AP相切于點T,與AQ相交于兩點B、C.
(1)BT是否平分∠OBA?證明你的結論;
(2)若已知AT=4,試求AB的長.

查看答案和解析>>

同步練習冊答案