若a、b、c是△ABC的三邊,請(qǐng)化簡(jiǎn)│a-b-c│+│b-c-a│+│c-a-b│.

 

【答案】

a+b+c

【解析】

試題分析:根據(jù)三角形的任兩邊之和大于第三邊可得a<b+c, b<c+a ,c<a+b,即可得到a-b-c<0,b-c-a<0,c-a-b<0,再根據(jù)絕對(duì)值的規(guī)律化簡(jiǎn)即可.

因?yàn)閍、b、c是△ABC的三邊,

所以a<b+c, b<c+a ,c<a+b

即a-b-c<0,b-c-a<0,c-a-b<0

所以│a-b-c│+│b-c-a│+│c-a-b│=-(a-b-c)-(b-c-a)-(c-a-b)=a+b+c.

考點(diǎn):三角形的三邊關(guān)系,絕對(duì)值的規(guī)律

點(diǎn)評(píng):三角形的三邊關(guān)系是初中數(shù)學(xué)的重點(diǎn),貫穿于整個(gè)初中數(shù)學(xué)的學(xué)習(xí),是中考中比較常見(jiàn)的知識(shí)點(diǎn),一般難度不大,需熟練掌握.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

22、下列語(yǔ)句錯(cuò)誤的有( 。﹤(gè).
①相等的角是對(duì)頂角;②等角的補(bǔ)角相等;③平面內(nèi),過(guò)一點(diǎn)有且只有一條直線與已知直線垂直;④大于直角的角都是鈍角;⑤射線AB和射線BA是兩條射線;⑥若AC=BC,則C是AB的中點(diǎn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知,如圖,在直角坐標(biāo)系內(nèi),△ABC的頂點(diǎn)在坐標(biāo)軸上,關(guān)于x的方程x2-4x+m2-2m+5=0有實(shí)數(shù)根,并且AB、AC的長(zhǎng)分別是方程兩根的5倍.
(1)求AB、AC的長(zhǎng);
(2)若tan∠ACO=
43
,P是AB的中點(diǎn),求過(guò)C、P兩點(diǎn)的直線解析式;
(3)在(2)問(wèn)的條件下,坐標(biāo)平面內(nèi)是否存在點(diǎn)M,使以點(diǎn)O、M、P、C為頂點(diǎn)的四邊形是平精英家教網(wǎng)行四邊形?若存在,請(qǐng)直接寫(xiě)出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

下列說(shuō)法中正確的是( 。
A、若AP=
1
2
AB,則P是AB的中點(diǎn)
B、若AB=2PB,則P是AB的中點(diǎn)
C、若AP=PB,則P是AB的中點(diǎn)
D、若AP=PB=
1
2
AB,則P是AB的中點(diǎn)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

在⊙O中,若圓心角∠AOB=100°,C是
AB
上一點(diǎn),則∠ACB等于( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

在線段AB上順次取三點(diǎn)C、D、E.
(1)若C、D、E是AB的四個(gè)等分點(diǎn),畫(huà)出圖形,并求圖中所有線段條數(shù);
(2)若AB=12,求(1)中所有線段的長(zhǎng)度;
(3)當(dāng)C、D、E是線段上順次三點(diǎn)時(shí),若AB=12.CE=2,求圖中所有線段的長(zhǎng)度和.

查看答案和解析>>

同步練習(xí)冊(cè)答案