如圖,菱形ABCD中,∠B=60°,AB=2,點(diǎn)E、F分別是AB、AD上的動(dòng)點(diǎn),且滿足BE=AF,接連EF、EC、CF.
(1)求證:△EFC是等邊三角形;
(2)試探究△AEF的周長(zhǎng)是否存在最小值?如果不存在,請(qǐng)說明理由;如果存在,請(qǐng)計(jì)算出△AEF周長(zhǎng)的最小值.
分析:(1)利用菱形的性質(zhì)首先得出△ABC是等邊三角形,進(jìn)而得出△AFC≌△BEC,即可得出△EFC是等邊三角形;
(2)利用當(dāng)CE⊥AB時(shí)CE最短,由△CEF是等邊三角形,EF也是最短的.CE是邊長(zhǎng)為2等邊△ABC的高,即可得出△AEF周長(zhǎng)的最小值.
解答:(1)證明:連接AC,
∵四邊形ABCD是菱形,
∴∠1=∠2=
1
2
∠BAD,AD∥BC,AB=BC,
∴∠B+∠BAD=180°,
∵∠B=60°,
∴∠BAD=120°,
∴∠1=∠2=60°,
∵AB=BC,
∴△ABC是等邊三角形,
∴AC=BC,
在△AFC和△BEC中,
AF=BE
∠B=∠2
AC=BC
,
∴△AFC≌△BEC(SAS),
∴FC=EC,∠4=∠3,
∵AD∥CB,
∴∠4+∠5=∠2=60°,
∴∠3+∠5=60°,
∴△EFC是等邊三角形;

(2)解:△AEF的周長(zhǎng)有最小值,
理由:當(dāng)CE⊥AB時(shí)CE最短,由△CEF是等邊三角形,
∴EF也是最短的.
CE是邊長(zhǎng)為2等邊△ABC的高,
∴CE=
3
,EF=
3
,
所以AE+AF+EF=2+
3

∴△AEF周長(zhǎng)的最小值為:2+
3
點(diǎn)評(píng):此題主要考查了菱形的性質(zhì)以及等邊三角形的判定與性質(zhì)和銳角三角函數(shù)等知識(shí),根據(jù)題意得出EF最小時(shí)則△AEF的周長(zhǎng)最小得出是解題關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

26、已知:如圖,菱形ABCD中,E,F(xiàn)分別是CB,CD上的點(diǎn),且BE=DF.
(1)求證:AE=AF;
(2)若∠B=60°,點(diǎn)E,F(xiàn)分別為BC和CD的中點(diǎn),求證:△AEF為等邊三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,菱形ABCD中,∠A=60°,AB=2,動(dòng)點(diǎn)P從點(diǎn)B出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度沿B→C→D向終點(diǎn)D運(yùn)動(dòng).同時(shí)動(dòng)點(diǎn)Q從點(diǎn)A出發(fā),以相同的速度沿A→D→B向終點(diǎn)B運(yùn)動(dòng),運(yùn)動(dòng)的時(shí)間為x秒,當(dāng)點(diǎn)P到達(dá)點(diǎn)D時(shí),點(diǎn)P、Q同時(shí)停止運(yùn)動(dòng),設(shè)△APQ的面積為y,則反映y與x的函數(shù)關(guān)系的圖象是(  )
A、精英家教網(wǎng)B、精英家教網(wǎng)C、精英家教網(wǎng)D、精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,菱形ABCD中,∠BAD=60°,M是AB的中點(diǎn),P是對(duì)角線AC上的一個(gè)動(dòng)點(diǎn),若AB長(zhǎng)為2
3
,則PM+PB的最小值是
3
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖:菱形ABCD中,E是AB的中點(diǎn),且CE⊥AB,AB=6cm.
求:(1)∠BCD的度數(shù);
(2)對(duì)角線BD的長(zhǎng);
(3)菱形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,菱形ABCD中,∠ADC=120°,AB=10,
(1)求BD的長(zhǎng).
(2)求菱形的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案