【題目】如圖1,在矩形中,點分別在邊上,點分別在邊上,且.
如圖2,過點作于點過點作于點可知四邊形四邊形四邊形四邊形都是矩形,即,通過證明可求得的值為_ .
如圖3,在正方形中,點分別在邊上,于點,則的值為 .
如圖4,在的條件下,延長交的延長線于點連接交于點.若求的值.
【答案】(1);(2)1;(3)2
【解析】
(1)如圖5,先證明在直角三角形和直角三角形,,即;再由,可證明;據(jù)此列出比例關(guān)系,即可得到答案.
(2)如圖6,先證明,再證明,據(jù)此列出比例關(guān)系,即可得到答案.
(3)如圖7,先根據(jù),設(shè),,則得到,;再由,可求得,從而可得;由,可得,據(jù)此列出比例關(guān)系,即可得到答案.
解:(1)如圖5,設(shè)與相交于點,與相交于點,與相交于點,
圖5
∵四邊形,四邊形都是矩形,
∴,即,
∴,
∵,
∴,
∴,
又∵,
∴,即,
∵, ,
∴,
∴在與中,
∴,
∴,
即,
故答案為:.
(2)如圖6,過作于,過作于,設(shè)與交于點,與交于點,則,,
圖6
∵,
∴,
∵,
∴,
又∵,
∴,
∴在與中,
∴,
∴,
又正方形中,
∴
故答案為:1.
(3)如圖7,
圖7
∵,
設(shè),,
則,,
∴,
∵,
∴,,
∴,
∴,
∴,,
∴,
,
∴,
∴,
即,
故答案為:2.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=﹣x2﹣2x+3交x軸于點A、C(點A在點C左側(cè)),交y軸于點B.
(1)求A,B,C三點坐標(biāo);
(2)如圖1,點D為AC中點,點E在線段BD上,且BE=2DE,連接CE并延長交拋物線于點M,求點M坐標(biāo);
(3)如圖2,將直線AB繞點A按逆時針方向旋轉(zhuǎn)15°后交y軸于點G,連接CG,點P為△ACG內(nèi)一點,連接PA、PC、PG,分別以AP、AG為邊,在它們的左側(cè)作等邊△APR和等邊△AGQ,求PA+PC+PG的最小值,并求當(dāng)PA+PC+PG取得最小值時點P的坐標(biāo)(直接寫出結(jié)果即可).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知C(3,4),以點C為圓心的圓與y軸相切.點A、B在x軸上,且OA=OB.點P為⊙C上的動點,∠APB=90°,則AB長度的最大值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角標(biāo)系中,已知△ABC三個頂點的坐標(biāo)分別為A(﹣1,2),B(﹣3,4),C(﹣1,6).
(1)畫出△ABC,并求出BC所在直線的解析式;
(2)畫出△ABC繞點A順時針旋轉(zhuǎn)90°后得到的△AB1C1,并求出△ABC在上述旋轉(zhuǎn)過程中掃過的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線經(jīng)過A(﹣1,0),B(5,0),C(0,)三點.
(1)求拋物線的解析式;
(2)在拋物線的對稱軸上有一點P,使PA+PC的值最小,求點P的坐標(biāo);
(3)點M為x軸上一動點,在拋物線上是否存在一點N,使以A,C,M,N四點構(gòu)成的四邊形為平行四邊形?若存在,求點N的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠AOB=90°,∠B=30°,以點O為圓心,OA為半徑作弧交AB于點A、點C,交OB于點D,若OA=3,則陰影都分的面積為___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:
數(shù)學(xué)活動課上,李老師給出如下定義:如果一個三角形有一邊上的中線等于這條邊的一半,那么稱三角形為“智慧三角形”.
理解:
⑴如圖,已知是⊙上兩點,請在圓上找出滿足條件的點,使為“智慧三角形”(畫出點的位置,保留作圖痕跡);
⑵如圖,在正方形中,是的中點,是上一點,且,試判斷是否為“智慧三角形”,并說明理由;
運用:
⑶如圖,在平面直角坐標(biāo)系中,⊙的半徑為,點是直線上的一點,若在⊙上存在一點,使得為“智慧三角形”,當(dāng)其面積取得最小值時,直接寫出此時點的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,于點,,為了研究圖中線段之間的關(guān)系,設(shè),,
(1)可通過證明,得到關(guān)于的函數(shù)表達(dá)式__________,其中自變量的取值范圍是___________;
(2)根據(jù)圖中給出的(1)中函數(shù)圖象上的點,畫出該函數(shù)的圖象;
(3)借助函數(shù)圖象,回答下列問題:①的最小值是__________;②已知當(dāng)時,的形狀與大小唯一確定,借助函數(shù)圖象給出的一個估計值(精確到0.1)或者借助計算給出的精確值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com