【題目】如圖,正方形網(wǎng)格中,每個(gè)小正方形的邊長(zhǎng)為1個(gè)單位,以O為原點(diǎn)建立平面直角坐標(biāo)系,圓心為 A(3,0)的⊙Ay軸截得的弦長(zhǎng)BC=8.

解答下列問(wèn)題:

(1)求⊙A 的半徑;

(2)請(qǐng)?jiān)趫D中將⊙A 先向上平移 6 個(gè)單位,再向左平移8個(gè)單位得到⊙D,并寫(xiě)出圓心D的坐標(biāo);

(3)觀察你所畫(huà)的圖形,對(duì)⊙D ⊙A 的位置關(guān)系作出合情的猜想,并直接寫(xiě)出你的結(jié)論.

【答案】(1)⊙A的半徑是5;(2)圖詳見(jiàn)解析,圓心D的坐標(biāo)是(﹣5,6);(3)⊙D ⊙A 的位置關(guān)系是外切.

【解析】

(1)連接AB根據(jù)垂徑定理求出BO,根據(jù)勾股定理求出AB即可;

(2)根據(jù)已知畫(huà)出圖形即可,根據(jù)平移規(guī)律求出D的坐標(biāo)即可;

(3)根據(jù)圖形即可得出結(jié)論.

(1)解:∵x⊥y軸,Ax軸上,

∴BO=CO=4,

連接AB,由勾股定理得:AB==5,

答:⊙A的半徑是5.

(2)解:如圖:

圓心D的坐標(biāo)是(﹣5,6).

(3)解:⊙D ⊙A 的位置關(guān)系是外切.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,在長(zhǎng)方形中,AB=4cm,BC=6cm,點(diǎn)中點(diǎn),如果點(diǎn)在線段上以每秒2cm的速度由點(diǎn)向點(diǎn)運(yùn)動(dòng),同時(shí),點(diǎn)在線段上由點(diǎn)向點(diǎn)運(yùn)動(dòng).設(shè)點(diǎn)運(yùn)動(dòng)時(shí)間為秒,若某一時(shí)刻BPECQP全等,求此時(shí)的值及點(diǎn)的運(yùn)動(dòng)速度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某風(fēng)景區(qū)的沿湖公路AB=3千米,BC=4千米,CD=12千米,AD=13千米,其中AB^BC,圖中陰影是草地,其余是水面.那么乘游艇游點(diǎn)C出發(fā),行進(jìn)速度為每小時(shí)11千米,到達(dá)對(duì)岸AD最少要用 小時(shí).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,EAD邊上一點(diǎn),PQ垂直平分BE,分別交AD、BE、BC于點(diǎn)P、O、Q,連接BP、QE

1)求證:四邊形BPEQ是菱形:

2)若AB6,FAB中點(diǎn),OF4,求菱形BPEQ的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中,,,上一點(diǎn),,,垂足為,.若,試求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在△ABC中,已知AD是角平分線,∠B=66°,∠C=54°.

(1)求∠ADB的度數(shù);

(2)若DE⊥AC于點(diǎn)E,求∠ADE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線y=x32x軸交于A、B兩點(diǎn)(點(diǎn)AB的左側(cè)),與y軸交于C點(diǎn),頂點(diǎn)D

1)求點(diǎn)AB、D三點(diǎn)的坐標(biāo);

2)連結(jié)CDx軸于G,過(guò)原點(diǎn)OOECD,垂足為H,交拋物線對(duì)稱軸于E,求出E點(diǎn)的縱坐標(biāo);

3)以②中點(diǎn)E為圓心,1為半徑畫(huà)圓,在對(duì)稱軸右側(cè)的拋物線上有一動(dòng)點(diǎn)P,過(guò)P作⊙E的切線,切點(diǎn)為Q,當(dāng)PQ的長(zhǎng)最小時(shí),求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)A,B,C,D的坐標(biāo)分別是(1,7),(1,1),(4,1),(6,1),以C,D,E為頂點(diǎn)的三角形與ABC相似,則點(diǎn)E的坐標(biāo)不可能是

A.(6,0) B.(6,3) C.(6,5) D.(4,2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,B、C、D在同一直線上,△ABC△ECD都是等邊三角形,BEAD相交于點(diǎn)M,

(1)求證:∠CBE=∠CAD;

(2)由(1)可知,圖中的△EBC是由△DAC怎樣變換(填一種變換)得到的.

查看答案和解析>>

同步練習(xí)冊(cè)答案