【題目】如圖,拋物線經過、兩點,與軸交于另一點

求此拋物線的解析式;

已知點在第四象限的拋物線上,求點關于直線對稱的點的坐標.

的條件下,連接,問在軸上是否存在點,使?若存在,請求出點的坐標;若不存在,請說明理由.

【答案】 ;關于直線對稱的點;存在.,或

【解析】

(1)將A(-1,0)、C(0,-3)兩點坐標代入拋物線y=ax2+bx-3a中,列方程組求a、b的值即可;

(2)將點D(m,-m-1)代入(1)中的拋物線解析式,求m的值,再根據(jù)對稱性求點D關于直線BC對稱的點D'的坐標;

(3)分兩種情形①過點CCP∥BD,交x軸于P,則∠PCB=∠CBD,②連接BD′,過點CCP′∥BD′,交x軸于P′,

分別求出直線CP和直線CP′的解析式即可解決問題.

代入拋物線中,

,

解得

;

將點代入中,得

,

解得

在第四象限,

直線解析式為,

,,,

關于直線對稱的點

存在.

點作軸,垂足為,交直線點(如圖),

,

,

軸,四邊形為平行四邊形,

,

相交于

易求解析式為:,

,得到關于的方程,解方程后,得;

于是,點坐標為:;

于是解析式為:,

方程中,,則,

所以,點坐標為:,

,或

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,平分的中垂線交于點,交于點,連接,.為等腰三角形,則的度數(shù)為___________;

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】國家推行節(jié)能減排,低碳經濟政策后,某企業(yè)推出一種叫“CNG”的改燒汽油為天然氣的裝置,每輛車改裝費為b元,如圖所示l1l2分別表示每輛車的燃料費(含改裝費)y(元)與正常運營時間x(天)之間的關系.

1)哪條線表示每輛車改裝后的燃料費(含改裝費)y(元)與正常運營時間x(天)之間的關系?

2)每輛車的改裝費b= 元,正常營運 天后,就可以從節(jié)省的燃料費中收回改裝成本;

3)每輛車改裝前每天的燃料費為 元;改裝后每天的燃料費為 元;

4)直接寫出每輛車改裝前、后的燃料費(含改裝費)y(元)與正常運營時間x(天)之間的關系式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形中,,,,設的長為,四邊形的面積為,則之間的函數(shù)關系式是(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,如圖,ADBC,AE平分∠BAD,點E是CD的中點.

1)求證:AB=ADBC

2)求證:AEBE

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,某電視塔AB和樓CD的水平距離為100米,從樓頂C處及樓底D處測得塔頂A的仰角分別為45°60°,試求塔高和樓高.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC是等邊三角形,ADBC邊上的高,點EAC邊的中點,點PAD上的一個動點,當PC+PE最小時,∠CPE的度數(shù)是(

A.30°B.45°C.60°D.70°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為解決樓房之間的擋光問題,某地區(qū)規(guī)定:兩幢樓房間的距離至少為米,中午時不能擋光. 如圖,某舊樓的一樓窗臺高1米,要在此樓正南方米處再建一幢新樓. 已知該地區(qū)冬天中午時陽光從正南方照射,并且光線與水平線的夾角最小為°,在不違反規(guī)定的情況下,請問新建樓房最高_____________. (結果精確到1.,)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明、小剛和小紅打算各自隨機選擇本周日的上午或下午去興化李中水上森林游玩.

1)小明和小剛都在本周日上午去游玩的概率為

2)求他們三人在同一個半天去游玩的概率.

查看答案和解析>>

同步練習冊答案