【題目】如圖,已知一次函數(shù)y1x+m的圖象與xy軸分別交于點(diǎn)AB,與反比例函數(shù)y2x0)的圖象分別交于點(diǎn)C、D,且C點(diǎn)的坐標(biāo)為(﹣1,2).

1)分別求出一次函數(shù)及反比例函數(shù)的關(guān)系式;

2)求出點(diǎn)D的坐標(biāo)并直接寫出y1y2的解集.

【答案】(1) 一次函數(shù)的解析式為y1x+3,反比例函數(shù)的解析式為:y2=﹣;(2D(﹣2,1),y1y2的解集為﹣2x<﹣1

【解析】

1)把點(diǎn)C(﹣1,2)分別代入一次函數(shù)y1=x+m,反比例函數(shù)y2=,即可求出一次函數(shù)及反比例函數(shù)的關(guān)系式;

2)聯(lián)立解析式,解方程組即可求得D的坐標(biāo),然后根據(jù)圖象即可求得y1y2為的解集.

1)把點(diǎn)C(﹣1,2)代入y1=x+m得:2=1+m,解得:m=3,把點(diǎn)C(﹣1,2)代入y2=x0)得:2=,解得:k2=2,故一次函數(shù)的解析式為y1=x+3,反比例函數(shù)的解析式為:y2=

2)解,得:,∴D(﹣21),∴y1y2的解集為﹣2x<﹣1

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某超市銷售一種商品,成本每千克40元,規(guī)定每千克售價(jià)不低于成本,且不高于80元,經(jīng)市場調(diào)查,每天的銷售量y(千克)與每千克售價(jià)x(元)滿足一次函數(shù)關(guān)系,部分?jǐn)?shù)據(jù)如下表:

(1)求yx之間的函數(shù)表達(dá)式;

(2)設(shè)商品每天的總利潤為W(元),求Wx之間的函數(shù)表達(dá)式(利潤=收入-成本);

(3)試說明(2)中總利潤W隨售價(jià)x的變化而變化的情況,并指出售價(jià)為多少元時(shí)獲得最大利潤,最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC是邊長為4的正三角形,以AB邊作正方形ABDE,點(diǎn)P和點(diǎn)Q分別是線段AC和線段BC上的中點(diǎn),連接AQBP相交于點(diǎn)M,則點(diǎn)MDE的距離是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,點(diǎn)O在斜邊AB上,以O(shè)為圓心,OB為半徑作圓,分別與BC,AB相交于點(diǎn)D,E,連結(jié)AD.已知∠CAD=∠B,

(1)求證:AD是⊙O的切線.

(2)若BC=8,tanB=,求⊙O 的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對于函數(shù)有以下四個(gè)結(jié)論:①這是y關(guān)于x的反比例函數(shù);②當(dāng)x0時(shí),y的值隨著x的增大而減;③函數(shù)圖象與y軸有且只有一個(gè)點(diǎn);④函數(shù)圖象關(guān)于點(diǎn)(﹣3,0)成中心對稱.其中正確的是( 。

A.①②B.③④C.①②③D.②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形網(wǎng)格圖中建立一直角坐標(biāo)系,一條圓弧經(jīng)過網(wǎng)格點(diǎn)A、BC,請回答:

1)該圓弧所在圓心D點(diǎn)的坐標(biāo)為 ;

2)扇形DAC的圓心角度數(shù)為 ;

3)若扇形DAC是某一個(gè)圓錐的側(cè)面展開圖,求該圓錐的高.(保留根號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于的一元二次方程

1)若此方程的一個(gè)根為1,求的值;

2)求證:不論取何實(shí)數(shù),此方程都有兩個(gè)不相等的實(shí)數(shù)根.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線yx2+ax+bx軸交于點(diǎn)A(﹣10),B30).

1)求拋物線的解析式;

2)過點(diǎn)D0,)作x軸的平行線交拋物線于E,F兩點(diǎn),求EF的長;

3)當(dāng)時(shí),直接寫出x的取值范圍是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=5,BC=12,點(diǎn)EBC邊上一點(diǎn),連接AE,將△ABE沿AE折疊,使點(diǎn)B落在點(diǎn)B′處.當(dāng)△CEB′為直角三角形時(shí),_____

查看答案和解析>>

同步練習(xí)冊答案