(2011•溫州)如圖,AB是⊙O的直徑,弦CD⊥AB于點(diǎn)E,過點(diǎn)B作⊙O的切線,交AC的延長(zhǎng)線于點(diǎn)F.已知OA=3,AE=2,
(1)求CD的長(zhǎng);
(2)求BF的長(zhǎng).
解:(1)如圖:

連接OC,∵AB是直徑,弦CD⊥AB,
∴CE=DE
在直角△OCE中,OC2=OE2+CE2
32=(3﹣2)2+CE2
得:CE=2,
∴CD=4
(2)∵BF切⊙O于點(diǎn)B,
∴∠ABF=90°=∠AEC
∴△ACE∽△AFB
=
即:=
∴BF=6
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,已知A、B兩點(diǎn)的坐標(biāo)分別為(2,0)、(0,2),⊙C的圓心坐標(biāo)為(-1,0),
半徑為1.若D是⊙C上的一個(gè)動(dòng)點(diǎn),線段DA與y軸交于點(diǎn)E,則△ABE面積的最小值是【    】        
                                               
A.2    B.1   C.    D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(15分)如圖,已知⊙和⊙相交于兩點(diǎn),過點(diǎn)作⊙的切線交⊙
于點(diǎn),過點(diǎn)作兩圓的割線分別交⊙、⊙,相交于點(diǎn)
1)求證:;
(2)求證:
(3)當(dāng)⊙與⊙為等圓時(shí),且時(shí),求的面積的比值。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖7,是⊙的直徑,AC與⊙相切,切點(diǎn)為A,D為⊙上一點(diǎn),AD與OC相交于點(diǎn)E,且.
(1)求證:
(2)若,,求線段CE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

(2011•陜西)同一平面內(nèi)的兩個(gè)圓,他們的半徑分別為2和3,圓心距為d,當(dāng)1<d<5時(shí),兩圓的位置關(guān)系是( 。
A.外離B.相交
C.內(nèi)切或外切D.內(nèi)含

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

(2011•常德)如圖,已知⊙O是△ABC的外接圓,且∠C=70度,則∠OAB=  

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

(2011山東濟(jì)南,12,3分)如圖,O為原點(diǎn),點(diǎn)A的坐標(biāo)為(3,0),點(diǎn)B的坐標(biāo)為(0,4),⊙D過A、B、O三點(diǎn),點(diǎn)C為上一點(diǎn)(不與O、A兩點(diǎn)重合),則cosC的值為( 。

A.            B.       C.                    D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

(2011•恩施州)如圖,直線AB、AD與⊙O相切于點(diǎn)B、D,C為⊙O上一點(diǎn),且∠BCD=140°,則∠A的度數(shù)是(  )

A、70°          B、105°
C、100°         D、110°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,D是△ABC的邊BC的中點(diǎn),過AD延長(zhǎng)線上的點(diǎn)E作AD的垂線EF,E為垂足,EF與AB的延長(zhǎng)線相交于點(diǎn)F,點(diǎn)O在AD上,AO=CO,BC∥EF.
(1)證明:AB=AC;
(2)證明:點(diǎn)O是△ABC的外接圓的圓心;
(3)當(dāng)AB=5,BC=6時(shí),連接BE,若∠ABE=90°,求AE的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案