【題目】某學(xué)校在開展“書香校園”活動期間,對學(xué)生課外閱讀的喜好進行抽樣調(diào)查(每人只選一種書籍),將調(diào)查結(jié)果繪制成如圖所示的兩幅不完整的統(tǒng)計圖,根據(jù)圖中的信息,解答下列問題:
(1)這次調(diào)查的學(xué)生人數(shù)為 人,扇形統(tǒng)計圖中m的值為 ;
(2)補全條形統(tǒng)計圖;
(3)如果這所學(xué)校要添置學(xué)生課外閱讀的書籍1500冊,請你估計“科普”類書籍應(yīng)添置多少冊比較合適?
【答案】(1)200,15;(2)補圖見解析;(3)450.
【解析】
試題分析:(1)用文學(xué)的人數(shù)和所占的百分比求出總?cè)藬?shù),用整體1減去文學(xué)、科普、軍事所占的百分比,即可求出m的值;
(2)用200乘以科普所占的百分比,求出科普的人數(shù),再補全統(tǒng)計圖幾即可;
(3)用課外閱讀的書籍的冊數(shù)乘以科普所占的百分比,即可得出答案.
試題解析:(1)這次調(diào)查的學(xué)生人數(shù)為=200(人),
扇形統(tǒng)計圖中軍事所占的百分比是:1-35%-20%-30%=15%,
則m=15;
(2)科普的人數(shù)是:200×30%=60(人),
補圖如下:
(3)根據(jù)題意得:1500×=450(冊),
答:“科普”類書籍應(yīng)添置450冊比較合適.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在矩形紙片ABCD中,AB=3cm,AD=5cm,折疊紙片使B點落在邊AD上的E處,折痕為PQ,過點E作EF∥AB交PQ于F,連接BF.
(1)求證:四邊形BFEP為菱形;
(2)當點E在AD邊上移動時,折痕的端點P、Q也隨之移動;
①當點Q與點C重合時(如圖2),求菱形BFEP的邊長;
②若限定P、Q分別在邊BA、BC上移動,求出點E在邊AD上移動的最大距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正五邊形的邊長為2,連接對角線AD、BE、CE,線段AD分別與BE和CE相交于點M、N,給出下列結(jié)論:①∠AME=108°,②AN2=AMAD;③MN=3-;④S△EBC=2-1,其中正確的結(jié)論是_________(把你認為正確結(jié)論的序號都填上).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,拋物線y=ax2+bx-2與x軸的兩個交點分別為A(1,0),B(4,0),與y軸的交點為C.
(1)求出拋物線的解析式及點C的坐標;
(2)點P是在直線x=4右側(cè)的拋物線上的一動點,過P作PM⊥x軸,垂足為M,是否存在P點,使得以A,P,M為頂點的三角形與△OCB相似?若存在,請求出符合條件的點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠BAC=90°,AB=6,AC=8.射線BD為∠ABC的平分線,交AC于點D.動點P以每秒2個單位長度的速度從點B向終點C運動.作PE⊥BC交射線BD于點E.以PE為邊向右作正方形PEFG.正方形PEFG與△BDC重疊部分圖形的面積為S.
(1)求tan∠ABD的值.
(2)當點F落在AC邊上時,求t的值.
(3)當正方形PEFG與△BDC重疊部分圖形不是三角形時,求S與t之間的函數(shù)關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】國家環(huán)保局統(tǒng)一規(guī)定,空氣質(zhì)量分為5級:當空氣污染指數(shù)達0—50時為1級,質(zhì)量為優(yōu);51—100時為2級,質(zhì)量為良;101—200時為3級,輕度污染;201—300時為4級,中度污染;300以上時為5級,重度污染.某城市隨機抽取了2015年某些天的空氣質(zhì)量檢測結(jié)果,并整理繪制成如下兩幅不完整的統(tǒng)計圖.請根據(jù)圖中信息,解答下列各題:
(1) 本次調(diào)查共抽取了 天的空氣質(zhì)量檢測結(jié)果進行統(tǒng)計;
(2) 補全條形統(tǒng)計圖;
(3) 扇形統(tǒng)計圖中3級空氣質(zhì)量所對應(yīng)的圓心角為 °;
(4) 如果空氣污染達到中度污染或者以上,將不適宜進行戶外活動,根據(jù)目前的統(tǒng)計,請你估計2015年該城市有多少天不適宜開展戶外活動.(2015年共365天)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在數(shù)軸上,點A表示1,現(xiàn)將點A沿數(shù)軸做如下移動:第一次將點A向左移動3個單位長度到達點A1,第2次將點A1向右平移6個單位長度到達點A2,第3次將點A2向左移動9個單位長度到達點A3…則第6次移動到點A6時,點A6在數(shù)軸上對應(yīng)的實數(shù)是_____;按照這種規(guī)律移動下去,第2017次移動到點A2017時,A2017在數(shù)軸上對應(yīng)的實數(shù)是__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系中,以A(3,0)為圓心,以5為半徑的圓與x軸相交于B. C,與y軸的負半軸相交于D,拋物線y=x+bx+c經(jīng)過B. C. D三點。
(1)求此拋物線的解析式;
(2)若動直線MN(MN∥x軸)從點D開始,以每秒1個長度單位的速度沿y軸的正方向移動,且與線段CD、y軸分別交于M、N兩點,動點P同時從點C出發(fā),在線段OC上以每秒2個長度單位的速度向原點O運動,連接PM,設(shè)運動時間為t秒,若以P、C. M為頂點的三角形與△OCD相似,求實數(shù)t的值;
②當t為何值時, 的值最大,并求出最大值。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】矩形紙片ABCD中,已知AD=8,AB=6,E是邊BC上的點,以AE為折痕折疊紙片,使點B落在點F處,連接FC,當△EFC為直角三角形時,BE的長為 .
【答案】3或6
【解析】試題分析:
由題意可知有兩種情況,見圖1與圖2;
圖1:當點F在對角線AC上時,∠EFC=90°,
∵∠AFE=∠B=90°,∠EFC=90°,
∴點A、F、C共線,
∵矩形ABCD的邊AD=8,
∴BC=AD=8,
在Rt△ABC中,AC==10,
設(shè)BE=x,則CE=BC﹣BE=8﹣x,
由翻折的性質(zhì)得,AF=AB=6,EF=BE=x,
∴CF=AC﹣AF=10﹣6=4,
在Rt△CEF中,EF2+CF2=CE2,
即x2+42=(8﹣x)2,
解得x=3,
即BE=3;
圖2:當點F落在AD邊上時,∠CEF=90°,
由翻折的性質(zhì)得,∠AEB=∠AEF=×90°=45°,
∴四邊形ABEF是正方形,
∴BE=AB=6,
綜上所述,BE的長為3或6.
故答案為:3或6.
考點:1、軸對稱(翻折變換);2、勾股定理
【題型】填空題
【結(jié)束】
15
【題目】計算:()﹣2﹣+(﹣4)0﹣cos45°.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com