(2005•玉林)如圖,⊙O的直徑AB=8,P是上半圓(A、B除外)上任一點,∠APB的平分線交⊙O于C,弦EF過AC、BC的中點M、N,則EF的長是( )

A.4
B.2
C.6
D.2
【答案】分析:由于PC平分∠APB,易得=,如果連接OC交EF于D,根據(jù)垂徑定理可知:OC必垂直平分EF.
由于M、N是AC、BC的中點,因此MN是△ABC的中位線,根據(jù)平行線分線段成比例定理可得:OD=CD=OC=2.連接OE,可在Rt△OED中求出ED的長,即可得出EF的值.
解答:解:∵PC是∠APB的角平分線,
∴弧AC=弧BC;
∴AC=BC;
∵AB是直徑,
∴∠ACB=90°.
即△ABC是等腰直角三角形.
連接OC,交EF于點D,則OC⊥AB;
∵M、N是AC、BC的中點,∴MN∥AB;
∴OC⊥EF,OD=OC=2.
連接OE,根據(jù)勾股定理,得:DE=2,EF=2ED=4
故選A.
點評:此題綜合運用了圓周角定理及其推論發(fā)現(xiàn)等腰直角三角形,再進一步根據(jù)等腰三角形的性質以及中位線定理,求得EF的弦心距,最后結合垂徑定理和勾股定理求得弦長.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2004年全國中考數(shù)學試題匯編《反比例函數(shù)》(03)(解析版) 題型:解答題

(2005•玉林)如圖,拋物線y=x2+bx+c與x軸的負半軸相交于A、B兩點,與y軸的正半軸相交于C點,與雙曲線y=的一個交點是(1,m),且OA=OC.求拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源:2004年全國中考數(shù)學試題匯編《一次函數(shù)》(04)(解析版) 題型:解答題

(2005•玉林)如圖,A、B兩點的坐標分別是(x1,0)、(x2,0),其中x1、x2是關于x的方程x2+2x+m-3=0的兩根,且x1<0<x2
(1)求m的取值范圍;
(2)設點C在y軸的正半軸上,∠ACB=90°,∠CAB=30°,求m的值;
(3)在上述條件下,若點D在第二象限,△DAB≌△CBA,求出直線AD的函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學 來源:2005年全國中考數(shù)學試題匯編《反比例函數(shù)》(05)(解析版) 題型:解答題

(2005•玉林)如圖,拋物線y=x2+bx+c與x軸的負半軸相交于A、B兩點,與y軸的正半軸相交于C點,與雙曲線y=的一個交點是(1,m),且OA=OC.求拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源:2005年全國中考數(shù)學試題匯編《一次函數(shù)》(05)(解析版) 題型:解答題

(2005•玉林)如圖,A、B兩點的坐標分別是(x1,0)、(x2,0),其中x1、x2是關于x的方程x2+2x+m-3=0的兩根,且x1<0<x2
(1)求m的取值范圍;
(2)設點C在y軸的正半軸上,∠ACB=90°,∠CAB=30°,求m的值;
(3)在上述條件下,若點D在第二象限,△DAB≌△CBA,求出直線AD的函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學 來源:2005年廣西玉林市中考數(shù)學試卷(解析版) 題型:解答題

(2005•玉林)如圖,A、B兩點的坐標分別是(x1,0)、(x2,0),其中x1、x2是關于x的方程x2+2x+m-3=0的兩根,且x1<0<x2
(1)求m的取值范圍;
(2)設點C在y軸的正半軸上,∠ACB=90°,∠CAB=30°,求m的值;
(3)在上述條件下,若點D在第二象限,△DAB≌△CBA,求出直線AD的函數(shù)解析式.

查看答案和解析>>

同步練習冊答案