精英家教網 > 初中數學 > 題目詳情
(2012•吉林)如圖,在△ABC中,AB=AC,D為邊BC上一點,以AB,BD為鄰邊作?ABDE,連接AD,EC.
(1)求證:△ADC≌△ECD;
(2)若BD=CD,求證:四邊形ADCE是矩形.
分析:(1)根據平行四邊形的性質、等腰三角形的性質,利用全等三角形的判定定理SAS可以證得△ADC≌△ECD;
(2)利用等腰三角形的“三合一”性質推知AD⊥C=BC,即∠ADC=90°;由平行四邊形的判定定理(對邊平行且相等是四邊形是平行四邊形)證得四邊形ADCE是平行四邊形,所以有一個角是直角的平行四邊形是矩形.
解答:證明:(1)∵四邊形ABDE是平行四邊形(已知),
∴AB∥DE,AB=DE(平行四邊形的對邊平行且相等);
∴∠B=∠EDC(兩直線平行,同位角相等);
又∵AB=AC(已知),
∴AC=DE(等量代換),∠B=∠ACB(等邊對等角),
∴∠EDC=∠ACD(等量代換);
∵在△ADC和△ECD中,
AC=ED
∠ACD=∠EDC
DC=CD(公共邊)
,
∴△ADC≌△ECD(SAS);

(2)∵四邊形ABDE是平行四邊形(已知),
∴BD∥AE,BD=AE(平行四邊形的對邊平行且相等),
∴AE∥CD;
又∵BD=CD,
∴AE=CD(等量代換),
∴四邊形ADCE是平行四邊形(對邊平行且相等的四邊形是平行四邊形);
在△ABC中,AB=AC,BD=CD,
∴AD⊥BC(等腰三角形的“三合一”性質),
∴∠ADC=90°,
∴?ADCE是矩形.
點評:本題綜合考查了平行四邊形的判定與性質、全等三角形的判定以及矩形的判定.注意:矩形的判定定理是“有一個角是直角的‘平行四邊形’是矩形”,而不是“有一個角是直角的‘四邊形’是矩形”.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

(2012•吉林)如圖,在△ABC中,∠A=90°,AB=2cm,AC=4cm.動點P從點A出發(fā),沿AB方向以1cm/s的速度向點B運動,動點Q從點B同時出發(fā),沿BA方向以1cm/s的速度向點A運動.當點P到達點B時,P,Q兩點同時停止運動,以AP為一邊向上作正方形APDE,過點Q作QF∥BC,交AC于點F.設點P的運動時間為ts,正方形和梯形重合部分的面積為Scm2
(1)當t=
1
1
s時,點P與點Q重合;
(2)當t=
4
5
4
5
s時,點D在QF上;
(3)當點P在Q,B兩點之間(不包括Q,B兩點)時,求S與t之間的函數關系式.

查看答案和解析>>

科目:初中數學 來源: 題型:

(2012•吉林)如圖,有5個完全相同的小正方體組合成一個立方體圖形,它的俯視圖是( 。

查看答案和解析>>

科目:初中數學 來源: 題型:

(2012•吉林)如圖,在△ABC中,∠A=80°,∠B=40°.D、E分別是AB,AC上的點,且DE∥BC,則∠AED的度數是( 。

查看答案和解析>>

科目:初中數學 來源: 題型:

(2012•吉林)如圖,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,以點A為圓心,AC長為半徑畫弧,交AB于點D,則BD=
2
2

查看答案和解析>>

科目:初中數學 來源: 題型:

(2012•吉林)如圖,在等邊△ABC中,D是邊AC上一點,連接BD.將△BCD繞點B逆時針旋轉60°得到△BAE,連接ED.若BC=10,BD=9,則△AED的周長是
19
19

查看答案和解析>>

同步練習冊答案